hyperbolic flows
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 17)

H-INDEX

13
(FIVE YEARS 2)

Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1658
Author(s):  
Javier Murillo ◽  
Pilar García-Navarro

The numerical modeling of one-dimensional (1D) domains joined by symmetric or asymmetric bifurcations or arbitrary junctions is still a challenge in the context of hyperbolic balance laws with application to flow in pipes, open channels or blood vessels, among others. The formulation of the Junction Riemann Problem (JRP) under subsonic conditions in 1D flow is clearly defined and solved by current methods, but they fail when sonic or supersonic conditions appear. Formulations coupling the 1D model for the vessels or pipes with other container-like formulations for junctions have been presented, requiring extra information such as assumed bulk mechanical properties and geometrical properties or the extension to more dimensions. To the best of our knowledge, in this work, the JRP is solved for the first time allowing solutions for all types of transitions and for any number of vessels, without requiring the definition of any extra information. The resulting JRP solver is theoretically well-founded, robust and simple, and returns the evolving state for the conserved variables in all vessels, allowing the use of any numerical method in the resolution of the inner cells used for the space-discretization of the vessels. The methodology of the proposed solver is presented in detail. The JRP solver is directly applicable if energy losses at the junctions are defined. Straightforward extension to other 1D hyperbolic flows can be performed.


2021 ◽  
pp. 1-20
Author(s):  
TODD FISHER ◽  
BORIS HASSELBLATT

Abstract Stable accessibility of partially hyperbolic systems is central to their stable ergodicity, and we establish its $C^1$ -density among partially hyperbolic flows, as well as in the categories of volume-preserving, symplectic, and contact partially hyperbolic flows. As applications, we obtain on one hand in each of these four categories of flows the $C^1$ -density of the $C^1$ -stable topological transitivity and triviality of the centralizer, and on the other hand the $C^1$ -density of the $C^1$ -stable K-property of the natural volume in the latter three categories.


2021 ◽  
Vol 382 (1) ◽  
pp. 1-47
Author(s):  
Henk Bruin ◽  
Dalia Terhesiu ◽  
Mike Todd

AbstractWe obtain limit theorems (Stable Laws and Central Limit Theorems, both standard and non-standard) and thermodynamic properties for a class of non-uniformly hyperbolic flows: almost Anosov flows, constructed here. The link between the pressure function and limit theorems is studied in an abstract functional analytic framework, which may be applicable to other classes of non-uniformly hyperbolic flows.


2020 ◽  
Vol 21 (12) ◽  
pp. 3791-3834
Author(s):  
Vesselin Petkov ◽  
Luchezar Stoyanov

Sign in / Sign up

Export Citation Format

Share Document