Nitric oxide down-regulates the expression of organic cation transporters (OCT) 1 and 2 in rat kidney during endotoxemia

2008 ◽  
Vol 584 (2-3) ◽  
pp. 390-397 ◽  
Author(s):  
Suzanne Heemskerk ◽  
Alfons C. Wouterse ◽  
Frans G.M. Russel ◽  
Rosalinde Masereeuw
2000 ◽  
Vol 279 (4) ◽  
pp. F679-F687 ◽  
Author(s):  
Ulrich Karbach ◽  
Jörn Kricke ◽  
Friederike Meyer-Wentrup ◽  
Valentin Gorboulev ◽  
Christopher Volk ◽  
...  

Renal excretion and reabsorption of organic cations are mediated by electrogenic and electroneutral organic cation transporters, which belong to a recently discovered family of polyspecific transporters. These transporters are electrogenic and exhibit differences in substrate specificity. In rat, the renal expression of the polyspecific cation transporters rOCT1 and rOCT2 was investigated. By in situ hybridization, significant amounts of both rOCT1 and rOCT2 mRNA were detected in S1, S2, and S3 segments of proximal tubules. By immunohistochemistry, expression of the rOCT1 protein was mainly observed in S1 and S2 segments of proximal tubules, with lower expression levels in the S3 segments. At variance, rOCT2 protein was mainly expressed in the S2 and S3 segments. Both transporters were localized to the basolateral cell membrane. Neither rOCT1 nor rOCT2 was detected in the vasculature, the glomeruli, and nephron segments other than proximal tubules. The data suggest that rOCT1 and rOCT2 are responsible for basolateral cation uptake in the proximal tubule, which represents the first step in cation secretion.


2011 ◽  
Vol 301 (5) ◽  
pp. F997-F1004 ◽  
Author(s):  
R. Schneider ◽  
M. Meusel ◽  
B. Betz ◽  
M. Kersten ◽  
K. Möller-Ehrlich ◽  
...  

Renal organic cation transporters are downregulated by nitric oxide (NO) in rat endotoxemia. NO generated by inducible NO synthase (iNOS) is substantially increased in the renal cortex after renal ischemia-reperfusion (I/R) injury. Therefore, we investigated the effects of iNOS-specific NO inhibition on the expression of the organic cation transporters rOct1 and rOct2 (Slc22a1 and Slc22a2, respectively) after I/R injury both in vivo and in vitro. In vivo, N6-(1-iminoethyl)-l-lysine (l-NIL) completely inhibited NO generation after I/R injury. Moreover, l-NIL abolished the ischemia-induced downregulation of rOct1 and rOct2 as determined by qPCR and Western blotting. Functional evidence was obtained by measuring the fractional excretion (FE) of the endogenous organic cation serotonin. Concordant with the expression of the rate-limiting organic cation transporter, the FE of serotonin decreased after I/R injury and was totally abolished by l-NIL. In vitro, ischemia downregulated both rOct1 and rOct2, which were also abolished by l-NIL; the same was true for the uptake of the organic cation MPP. We showed that renal I/R injury downregulates rOct1 and rOct2, which is most probably mediated via NO. In principle, this may be an autocrine effect of proximal tubular epithelial cells. We conclude that rOct1, or rOct1 and rOct2 limit the rate of the renal excretion of serotonin.


2008 ◽  
Vol 37 (2) ◽  
pp. 424-430 ◽  
Author(s):  
Xin Ming ◽  
Wujian Ju ◽  
Huali Wu ◽  
Richard R. Tidwell ◽  
James E. Hall ◽  
...  

2013 ◽  
Vol 116 ◽  
pp. 27-35 ◽  
Author(s):  
Jayabalan Nirmal ◽  
Anju Sirohiwal ◽  
Sundararajan Baskar Singh ◽  
Nihar Ranjan Biswas ◽  
Vasantha Thavaraj ◽  
...  

2010 ◽  
Vol 39 (1-3) ◽  
pp. 76-81 ◽  
Author(s):  
Kristiina Tertti ◽  
Ulla Ekblad ◽  
Tuija Heikkinen ◽  
Melissa Rahi ◽  
Tapani Rönnemaa ◽  
...  

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Muhammad Erfan Uddin ◽  
Yan Jin ◽  
Alice A Gibson ◽  
Ingrid M Bonilla ◽  
Cynthia A Carnes ◽  
...  

Introduction: Dofetilide is a delayed rectifier potassium channel inhibitor used to treat patients with atrial fibrillation and flutter, and its use is associated with a risk of QT prolongation and Torsades de Pointes . The mechanisms involved in dofetilide’s renal tubular secretion and its uptake into cardiomyocytes remain unknown. Previously reported drug-drug interaction (DDI) studies suggest the involvement of organic cation transporters. Here, we investigated the contribution of organic cation transporters (OCT2 and MATE1) to the pharmacokinetics of dofetilide to gain insight into its DDI potential. Hypothesis: Based on known DDIs with dofetilide, we hypothesize that OCT2 and/or MATE1 play a key role in the inter-individual variability in pharmacokinetics and pharmacodynamics of dofetilide. Methods: In vitro and ex vivo transport kinetics of dofetilide were determined in HEK293 cells stably transfected with OCT2 or MATE1, and in isolated cardiomyocytes, respectively. In vivo studies were performed in wild-type, OCT2-, and MATE1-deficient mice (n=5) receiving dofetilide (5 mg/kg, p.o., 2.5 mg/kg, i.v.), with or without several contraindicated drugs. Dofetilide concentrations in plasma and urine were determined by UPLC-MS/MS. Results: In vitro studies demonstrated that dofetilide is a good substrate of MATE1 but not OCT2. Deficiency of MATE1 was associated with increased plasma concentrations of dofetilide and with a significantly reduced urinary excretion (3-fold in females and 5-fold in males, respectively). Dofetilide accumulation in cardiomyocytes was increased by 2-fold in MATE1-deficient females, and pre-incubation with the MATE1 inhibitor cimetidine significantly reduced dofetilide uptake in wild-type cardiomyocytes. Several contraindicated drugs listed in the dofetilide prescribing information, including cimetidine, ketoconazole, increased dofetilide plasma exposure in wild-type mice by >2.8-fold. Conclusion: Renal secretion of dofetilide is mediated by MATE1 and is highly sensitive to inhibition by many widely used prescription drugs that can cause clinically relevant DDIs. Deficiency of MATE1 also increases accumulation in the heart which may contribute to individual variation in response to dofetilide.


Sign in / Sign up

Export Citation Format

Share Document