renal expression
Recently Published Documents


TOTAL DOCUMENTS

327
(FIVE YEARS 55)

H-INDEX

41
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Temitayo Olabisi Ajibade ◽  
Akinleye Stephen AKINRINDE ◽  
Moses Olusola Adetona ◽  
Ademola Adetokunbo Oyagbemi ◽  
Aduragbenro Deborah A. Adedapo ◽  
...  

Abstract This study was designed to investigate the modulatory role of Luteolin (Lut) on haemodynamic parameters and the potential mechanisms involving renal Angiotensin II (AT2R) and Mineralocorticoid (MCR) receptors in renal toxicity induced by co-exposure to Diclofenac (Dcf) and sodium fluoride (NaF) in rats. Male Wistar rats were administered with either vehicle (control), Dcf only (9 mg/kg orally) or concurrently with NaF (300 ppm in drinking water). Other groups were treated with LutA (100 mg/kg) or LutB (200 mg/kg) along with Dcf and NaF exposures. All treatments lasted 8 days, following which blood pressure indices were measured using tail-cuff plethysmography. Renal expressions of AT2R and MCR were studied with immunohistochemistry, while biomarkers of oxidative and antioxidant status were also measured in the kidneys. Systolic, diastolic and mean arterial pressures were significantly (p<0.05) reduced in Dcf-treated rats, compared to control values. However, co-treatment with NaF or Lut restored these parameters. While the expression of AT2R and MCR was high in the Dcf and Dcf+NaF groups, treatment with Lut caused obvious reduction in the renal expression of these receptors. Increased lipid peroxidation (Malondialdehyde) and protein oxidation (protein carbonyls) with a lowering of reduced glutathione levels contributed to the renal toxicity of Dcf, which was significantly ameliorated in Lut-treated rats. The protective effect of Lut on blood pressure was probably mediated by stimulation of renal expressions of AT2R and MCR, reduction of oxidative stress and an improvement of renal antioxidant status.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7684
Author(s):  
Mohamed El-Sherbiny ◽  
Eslam K. Fahmy ◽  
Nada H. Eisa ◽  
Eman Said ◽  
Hany A. Elkattawy ◽  
...  

The development of the field of nanotechnology has revolutionized various aspects in the fields of modern sciences. Nano-medicine is one of the primary fields for the application of nanotechnology techniques. The current study sheds light on the reno-protective impacts of gold nano-particles; nanoGold (AuNPs) against 5-flurouracil (5-FU)-induced renal toxicity. Indeed, the use of 5-FU has been associated with kidney injury which greatly curbs its therapeutic application. In the current study, 5-FU injection was associated with a significant escalation in the indices of renal injury, i.e., creatinine and urea. Alongside this, histopathological and ultra-histopathological changes confirmed the onset of renal injury. Both gene and/or protein expression of nuclear factor erythroid 2–related factor 2 (Nrf-2) and downstream antioxidant enzymes revealed consistent paralleled anomalies. AuNPs administration induced a significant renal protection on functional, biochemical, and structural levels. Renal expression of the major sensor of the cellular oxidative status Nrf-2 escalated with a paralleled reduction in the renal expression of the other contributor to this axis, known as Kelch-like ECH-associated protein 1 (Keap-1). On the level of the effector downstream targets, heme oxygenase 1 (HO-1) and gamma-glutamylcysteine synthetase (γ-GCS) AuNPs significantly restored their gene and protein expression. Additionally, combination of AuNPs with 5-FU showed better cytotoxic effect on MCF-7 cells compared to monotreatments. Thus, it can be inferred that AuNPs conferred reno-protective impact against 5-FU with an evident modulatory impact on Nrf-2/Keap-1 and its downstream effectors, HO-1 and γ-GCS, suggesting its potential use in 5-FU regimens to improve its therapeutic outcomes and minimize its underlying nephrotoxicity.


GeroScience ◽  
2021 ◽  
Author(s):  
Tamás Kaucsár ◽  
Beáta Róka ◽  
Pál Tod ◽  
Phuong Thanh Do ◽  
Zoltán Hegedűs ◽  
...  

Abstract Elderly patients have increased susceptibility to acute kidney injury (AKI). Long noncoding RNAs (lncRNA) are key regulators of cellular processes, and have been implicated in both aging and AKI. Our aim was to study the effects of aging and ischemia–reperfusion injury (IRI) on the renal expression of lncRNAs. Adult and old (10- and 26–30-month-old) C57BL/6 N mice were subjected to unilateral IRI followed by 7 days of reperfusion. Renal expression of 90 lncRNAs and mRNA expression of injury, regeneration, and fibrosis markers was measured by qPCR in the injured and contralateral control kidneys. Tubular injury, regeneration, and fibrosis were assessed by histology. Urinary lipocalin-2 excretion was increased in old mice prior to IRI, but plasma urea was similar. In the control kidneys of old mice tubular cell necrosis and apoptosis, mRNA expression of kidney injury molecule-1, fibronectin-1, p16, and p21 was elevated. IRI increased plasma urea concentration only in old mice, but injury, regeneration, and fibrosis scores and their mRNA markers were similar in both age groups. AK082072 and Y lncRNAs were upregulated, while H19 and RepA transcript were downregulated in the control kidneys of old mice. IRI upregulated Miat, Igf2as, SNHG5, SNHG6, RNCR3, Malat1, Air, Linc1633, and Neat1 v1, while downregulated Linc1242. LncRNAs H19, AK082072, RepA transcript, and Six3os were influenced by both aging and IRI. Our results indicate that both aging and IRI alter renal lncRNA expression suggesting that lncRNAs have a versatile and complex role in aging and kidney injury. An Ingenuity Pathway Analysis highlighted that the most downregulated H19 may be linked to aging/senescence through p53.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Tao Liu ◽  
Mingyue Yang ◽  
Ying Xia ◽  
Chuan Jiang ◽  
Chenxu Li ◽  
...  

Abstract Background Screening abnormal pathways and complement components in the kidneys of patients with lupus nephritis (LN) and NZB/W mice may help to identify complement-related therapeutic targets for LN. Methods KEGG and GO enrichment assays were used to analyze kidney microarray data of LN patients and NZB/W mice. Immunohistochemistry and immunofluorescence assays were used to measure renal expression of complement-related proteins and TGFβ1. Cytokines were measured using RT-qPCR and ELISA. Results We screened the renal pathogenic pathways present in LN patients and NZB/W mice and selected the complement activation pathway for further study. The results indicated greater renal expression of C1qa, C1qb, C3, C3aR1, and C5aR1 at the mRNA and protein levels. C3 appeared to be a key factor in LN and the renal signaling downstream of C1 was inhibited. There were significant correlations between the expression of TGFβ1 and C3. Analysis of primary cell cultures indicated that TGFβ1 promoted the expression of C3 and that a TGFβ1 antagonist decreased the levels of C3 and C3aR. TGFβ1 inhibition significantly inhibited the deposition of complement-related factors in the kidneys of NZB/W mice. Conclusions At the onset of LN, there are significant increases in the renal levels of C3 and other complement pathway-related factors in patients with LN and NZB/W mice. C3 may lead to albuminuria and participate in the pathogenesis of LN. TGFβ1 promotes C3 synthesis, and TGFβ1 inhibition may block the progression of LN by inhibiting the synthesis of C3 and other complement components.


Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1163
Author(s):  
Sanjin Kovacevic ◽  
Milan Ivanov ◽  
Maja Zivotic ◽  
Predrag Brkic ◽  
Zoran Miloradovic ◽  
...  

Oxidative stress has been considered as a central aggravating factor in the development of postischemic acute kidney injury (AKI). The aim of this study was to perform the immunohistochemical analysis of 4-hydroxynonenal (4-HNE), neutrophil gelatinase-associated lipocalin (NGAL), and heme oxygenase-1 (HO-1) tissue expression after apocynin (APO) treatment and hyperbaric oxygenation (HBO) preconditioning, applied as single or combined protocol, in postischemic acute kidney injury induced in spontaneously hypertensive rats (SHR). Twenty-four hours before AKI induction, HBO preconditioning was carried out by exposing to pure oxygen (2.026 bar) twice a day, for 60 min in two consecutive days. Acute kidney injury was induced by removal of the right kidney while the left renal artery was occluded for 45 min by atraumatic clamp. Apocynin was applied in a dose of 40 mg/kg body weight, intravenously, 5 min before reperfusion. We showed increased 4-HNE renal expression in postischemic AKI compared to Sham-operated (SHAM) group. Apocynin treatment, with or without HBO preconditioning, improved creatinine and phosphate clearances, in postischemic AKI. This improvement in renal function was accompanied with decreased 4-HNE, while HO-1 kidney expression restored close to the control group level. NGAL renal expression was also decreased after apocynin treatment, and HBO preconditioning, with or without APO treatment. Considering our results, we can say that 4-HNE tissue expression can be used as a marker of oxidative stress in postischemic AKI. On the other hand, apocynin treatment and HBO preconditioning reduced oxidative damage, and this protective effect might be expected even in experimental hypertensive condition.


Author(s):  
Lusi Xu ◽  
Gaizun Hu ◽  
Jiahe Qiu ◽  
Yuxuan Fan ◽  
Yixuan Ma ◽  
...  

Background High‐fructose diet (HFr) induces hypertension and renal damage. However, it has been unknown whether the HFr‐induced hypertension and renal damage are exaggerated in subjects with salt sensitivity. We tested impacts of HFr in Dahl salt‐sensitive (DS) and salt‐resistant (DR) rats. Methods and Results Male DS and DR rats were fed control diet or HFr (60% fructose) with normal‐salt content. After 12 weeks, plasma and urinary parameters, renal histological characteristics, and renal expression of renin‐angiotensin system components were examined. Furthermore, effects of renin‐angiotensin system inhibitors were also examined in DS rats fed the HFr. HFr elevated blood pressure in DS rats but not in DR rats. HFr increased urinary albumin and liver type fatty acid binding protein excretions in both rats, but the excretions were exaggerated in DS rats. HFr increased plasma lipids and uric acid in both rats, whereas HFr increased creatinine clearance in DS rats but not DR rats. Although HFr decreased plasma renin activity in DS rats, HFr‐induced glomerular injury, afferent arteriolar thickening, and renal interstitial fibrosis were exaggerated in DS rats. HFr increased renal expression of angiotensinogen, renin, (pro)renin receptor, angiotensin‐converting enzyme, and angiotensin II type 1 receptor in DS rat, whereas HFr increased only angiotensin‐converting enzyme expression and decreased renin and angiotensin II type 1 receptor expressions in DR rats. Enalapril and candesartan attenuated the HFr‐induced hypertension, albuminuria, glomerular hyperfiltration, and renal damage in DS rats. Conclusion HFr‐induced hypertension and renal damage are exaggerated in DS rats via renal renin‐angiotensin system activation, which can be controlled by renin‐angiotensin system inhibitors.


Author(s):  
Jharna R. Das ◽  
Marina Jerebtsova ◽  
Pingtao Tang ◽  
Jinliang Li ◽  
Jing Yu ◽  
...  

Over 80% of all children living with HIV reside in Africa and are at risk of developing HIV-associated nephropathy (HIVAN). Once HIVAN is established in children, it is difficult to revert its progression to chronic kidney failure even using antiretroviral drugs. Therefore, new therapeutic strategies are needed. Previous studies showed that the risk of developing HIVAN increases in children with high circulating levels of FGF-2, but it is unclear whether FGF-2 per se precipitates HIVAN. To unravel the role of circulating FGF-2 in childhood HIVAN, we used the HIV-Tg26 mouse model of HIVAN. Briefly, we demonstrated that circulating FGF-2 was preferentially recruited in the kidney of HIV-Tg26 mice with renal disease, and precipitated HIVAN in young mice without pre-existing kidney disease by activating the pERK pathway in renal epithelial cells without previously inducing the expression of HIV-1 genes. Wild type mice injected with recombinant adenoviral FGF-2 vectors (rAd-FGF-2) carrying a secreted form of human FGF-2 developed transient and reversible HIVAN-like lesions, including proteinuria and glomerular enlargement. HIV-Tg26 mice injected with rAd-FGF-2 developed more significant proliferative and pro-fibrotic inflammatory lesions, similar to those seen in childhood HIVAN. These lesions were partially reversed in mice treated with the FGF/VEGF receptor tyrosine kinase inhibitor PD173074. In conclusion, we developed a new FGF-2-inducible model of childhood HIVAN, and showed that high circulating levels of FGF-2 precipitated HIVAN without inducing the renal expression of HIV-genes. These findings suggest that high plasma FGF-2 levels may be an independent risk factor for precipitating HIVAN in young children.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Safia Akhtar ◽  
Silas A. Culver ◽  
Helmy M. Siragy

AbstractRecent studies suggested that renal gluconeogenesis is substantially stimulated in the kidney in presence of obesity. However, the mechanisms responsible for such stimulation are not well understood. Recently, our laboratory demonstrated that mice fed high fat diet (HFD) exhibited increase in renal Atp6ap2 [also known as (Pro)renin receptor] expression. We hypothesized that HFD upregulates renal gluconeogenesis via Atp6ap2-PGC-1α and AKT pathway. Using real-time polymerase chain reaction, western blot analysis and immunostaining, we evaluated renal expression of the Atp6ap2 and renal gluconeogenic enzymes, PEPCK and G6Pase, in wild type and inducible nephron specific Atp6ap2 knockout mice fed normal diet (ND, 12 kcal% fat) or a high-fat diet (HFD, 45 kcal% fat) for 8 weeks. Compared with ND, HFD mice had significantly higher body weight (23%) (P < 0.05), renal mRNA and protein expression of Atp6ap2 (39 and 35%), PEPCK (44 and 125%) and G6Pase (39 and 44%) respectively. In addition, compared to ND, HFD mice had increased renal protein expression of PGC-1α by 32% (P < 0.05) and downregulated AKT by 33% (P < 0.05) respectively in renal cortex. Atp6ap2-KO abrogated these changes in the mice fed HFD. In conclusion, we identified novel regulation of renal gluconeogenesis by Atp6ap2 in response to high fat diet via PGC1-α/AKT-1 pathway.


2021 ◽  
Vol 99 (4) ◽  
pp. 368-377
Author(s):  
María Julia Severin ◽  
María Herminia Hazelhoff ◽  
Romina Paula Bulacio ◽  
María Eugenia Mamprin ◽  
Anabel Brandoni ◽  
...  

Erythropoietin (EPO) is a cytokine originally used for its effects on the hematopoietic system, and is widely prescribed around the world. In the present study, the effects of EPO administration on p-aminohippurate (PAH, a prototype organic anion) pharmacokinetics and on the renal expression of PAH transporters were evaluated. Male Wistar rats were treated with EPO or saline (control group). After 42 h, PAH was administered, and plasma samples were obtained at different time points to determine PAH levels. PAH levels in renal tissue and urine were also assessed. The renal expression of PAH transporters was evaluated by Western blotting. EPO-treated rats showed an increase in PAH systemic clearance, in its elimination rate constant, and in urinary PAH levels, while PAH in renal tissue was decreased. Moreover, EPO administration increased the expression of the transporters of the organic anions evaluated. The EPO-induced increase in PAH clearance is accounted for by the increase in its renal secretion mediated by the organic anion transporters. The goal of this study is to add important information to the wide knowledge gap that exists regarding drug–drug interactions. Owing to the global use of EPO, these results are useful in terms of translation into clinical practice.


Sign in / Sign up

Export Citation Format

Share Document