Nicotine modulates the facial stimulation-evoked responses in cerebellar granule cell layer in vivo in mice

2019 ◽  
Vol 843 ◽  
pp. 126-133
Author(s):  
Yin-Hua Xu ◽  
Bin-Bin Zhang ◽  
Wen-Hao Su ◽  
Mao-Cheng Wu ◽  
Yan-Hua Bing ◽  
...  
2011 ◽  
Vol 100 (3) ◽  
pp. 82a
Author(s):  
Don Patrick Bischop ◽  
Céline Roussel ◽  
Serge Schiffmann ◽  
David Gall

2017 ◽  
Vol 16 (4) ◽  
pp. 802-811 ◽  
Author(s):  
Jennifer Claire Robinson ◽  
C. Andrew Chapman ◽  
Richard Courtemanche

2017 ◽  
Author(s):  
Jason A. Estep ◽  
Wenny Wong ◽  
Yiu-Cheung E. Wong ◽  
Brian M. Loui ◽  
Martin M. Riccomagno

AbstractDuring mammalian cerebellar development, postnatal granule cell progenitors proliferate in the outer part of the External Granule Layer (EGL). Postmitotic granule progenitors migrate tangentially in the inner EGL before switching to migrate radially inward, past the Purkinje cell layer, to achieve their final position in the mature Granule Cell Layer (GCL). Here, we show that the RacGAP β-chimaerin is expressed by a small population of late-born, premigratory granule cells. β-chimaerin deficiency causes a subset of granule cells to become arrested in the EGL, where they differentiate and form ectopic neuronal clusters. These clusters of granule cells are able to recruit aberrantly projecting mossy fibers. Collectively, these data suggest a role for β-chimaerin as an intracellular mediator of Cerebellar Granule Cell radial migration.


2017 ◽  
Author(s):  
Jesse I. Gilmer ◽  
Abigail L. Person

AbstractCombinatorial expansion by the cerebellar granule cell layer (GCL) is fundamental to theories of cerebellar contributions to motor control and learning. Granule cells sample approximately four mossy fiber inputs and are thought to form a combinatorial code useful for pattern separation and learning. We constructed a spatially realistic model of the cerebellar granule cell layer and examined how GCL architecture contributes to granule cell (GrC) combinatorial diversity. We found that GrC combinatorial diversity saturates quickly as mossy fiber input diversity increases, and that this saturation is in part a consequence of short dendrites, which limit access to diverse inputs and favor dense sampling of local inputs. This local sampling also produced GrCs that were combinatorially redundant, even when input diversity was extremely high. In addition, we found that mossy fibers clustering, which is a common anatomical pattern, also led to increased redundancy of GrC input combinations. We related this redundancy to hypothesized roles of temporal expansion of GrC information encoding in service of learned timing, and show that GCL architecture produces GrC populations that support both temporal and combinatorial expansion. Finally, we used novel anatomical measurements from mice of either sex to inform modeling of sparse and filopodia-bearing mossy fibers, finding that these circuit features uniquely contribute to enhancing GrC diversification and redundancy. Our results complement information theoretic studies of granule layer structure and provide insight into the contributions of granule layer anatomical features to afferent mixing.Significance StatementCerebellar granule cells are among the simplest neurons, with tiny somata and on average just four dendrites. These characteristics, along with their dense organization, inspired influential theoretical work on the granule cell layer (GCL) as a combinatorial expander, where each granule cell represents a unique combination of inputs. Despite the centrality of these theories to cerebellar physiology, the degree of expansion supported by anatomically realistic patterns of inputs is unknown. Using modeling and anatomy, we show that realistic input patterns constrain combinatorial diversity by producing redundant combinations, which nevertheless could support temporal diversification of like-combinations, suitable for learned timing. Our study suggests a neural substrate for producing high levels of both combinatorial and temporal diversity in the GCL.


Sign in / Sign up

Export Citation Format

Share Document