dynamic properties
Recently Published Documents


TOTAL DOCUMENTS

8025
(FIVE YEARS 1606)

H-INDEX

113
(FIVE YEARS 13)

2022 ◽  
Vol 155 ◽  
pp. 111713
Author(s):  
Xiaoling Zou ◽  
Pengyu Ma ◽  
Liren Zhang ◽  
Jingliang Lv

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 309
Author(s):  
Siyu Cai ◽  
Baoshuai Han ◽  
Yanjin Xu ◽  
Enyu Guo ◽  
Bin Sun ◽  
...  

Flight feather shafts are outstanding bioinspiration templates due to their unique light weight and their stiff and strong characteristics. As a thin wall of a natural composite beam, the keratinous cortex has evolved anisotropic features to support flight. Here, the anisotropic keratin composition, tensile response, dynamic properties of the cortex, and fracture behaviors of the shafts are clarified. The analysis of Fourier transform infrared (FTIR) spectra indicates that the protein composition of calamus cortex is almost homogeneous. In the middle and distal shafts (rachis), the content of the hydrogen bonds (HBs) and side-chain is the highest within the dorsal cortex and is consistently lower within the lateral wall. The tensile responses, including the properties and dominant damage pattern, are correlated with keratin composition and fiber orientation in the cortex. As for dynamic properties, the storage modulus and damping of the cortex are also anisotropic, corresponding to variation in protein composition and fibrous structure. The fracture behaviors of bent shafts include matrix breakage, fiber dissociation and fiber rupture on compressive dorsal cortex. To clarify, ‘real-time’ damage behaviors, and an integrated analysis between AE signals and fracture morphologies, are performed, indicating that calamus failure results from a straight buckling crack and final fiber rupture. Moreover, in the dorsal and lateral walls of rachis, the matrix breakage initially occurs, and then the propagation of the crack is restrained by ‘ligament-like’ fiber bundles and cross fiber, respectively. Subsequently, the further matrix breakage, interface dissociation and induced fiber rupture in the dorsal cortex result in the final failure.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 252
Author(s):  
Natalia Lukasheva ◽  
Dmitry Tolmachev ◽  
Hector Martinez-Seara ◽  
Mikko Karttunen

Electrostatic interactions have a determining role in the conformational and dynamic behavior of polyelectrolyte molecules. In this study, anionic polyelectrolyte molecules, poly(glutamic acid) (PGA) and poly(aspartic acid) (PASA), in a water solution with the most commonly used K+ or Na+ counterions, were investigated using atomistic molecular dynamics (MD) simulations. We performed a comparison of seven popular force fields, namely AMBER99SB-ILDN, AMBER14SB, AMBER-FB15, CHARMM22*, CHARMM27, CHARMM36m and OPLS-AA/L, both with their native parameters and using two common corrections for overbinding of ions, the non-bonded fix (NBFIX), and electronic continuum corrections (ECC). These corrections were originally introduced to correct for the often-reported problem concerning the overbinding of ions to the charged groups of polyelectrolytes. In this work, a comparison of the simulation results with existing experimental data revealed several differences between the investigated force fields. The data from these simulations and comparisons with previous experimental data were then used to determine the limitations and strengths of these force fields in the context of the structural and dynamic properties of anionic polyamino acids. Physical properties, such as molecular sizes, local structure, and dynamics, were studied using two types of common counterions, namely potassium and sodium. The results show that, in some cases, both the macroion size and dynamics depend strongly on the models (parameters) for the counterions due to strong overbinding of the ions and charged side chain groups. The local structures and dynamics are more sensitive to dihedral angle parameterization, resulting in a preference for defined monomer conformations and the type of correction used. We also provide recommendations based on the results.


Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 81
Author(s):  
Achuan Wang ◽  
Xinnian Yang ◽  
Dabo Xin

The tree sway frequency is an important part of the dynamic properties of trees. In order to obtain trees sway frequency in wind, a method of tracking and measuring the sway frequency of leafless deciduous trees by adaptive tracking window based on MOSSE was proposed. Firstly, an adaptive tracking window is constructed for the observed target. Secondly, the tracking method based on Minimum Output Sum Of Squared Error Filter (MOSSE) is used to track tree sway. Thirdly, Fast Fourier transform was used to analyze the horizontal sway velocity of the target area on the trees, and the sway frequency was determined. Finally, comparing the power spectral densities (PSDs) of the x axis acceleration measured by the accelerometer and PSDs of the x axis velocity measured by the video, the fundamental sway frequency measured by the accelerometer is equal to the fundamental sway frequency measured by video. The results show that the video-based method can be used successfully for measuring the sway frequency of leafless deciduous trees.


Sign in / Sign up

Export Citation Format

Share Document