granule cell layer
Recently Published Documents


TOTAL DOCUMENTS

243
(FIVE YEARS 56)

H-INDEX

46
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Muhammad Nauman Arshad ◽  
Simon Oppenheimer ◽  
Jaye Jeong ◽  
Bilge Buyukdemirtas ◽  
Janice R Naegele

GABAergic interneurons within the dentate gyrus of the hippocampus regulate adult neurogenesis, including proliferation, migration, and maturation of new granule cells born in the subgranular zone (SGZ) of the dentate gyrus (DG). In temporal lobe epilepsy (TLE), some adult-born granule cells migrate ectopically into the hilus, and these cells contribute to increased hyperexcitability and seizures. Yet, transplanting embryonic day 13.5 fetal mouse medial ganglionic eminence (MGE) GABAergic progenitors into the hippocampus of mice with TLE ameliorates spontaneous seizures, due in part, to increased postsynaptic inhibition of adult-born granule cells. Here, we asked whether MGE progenitor transplantation affects earlier stages of adult neurogenesis, by comparing patterns of neurogenesis in naive mice and epileptic (TLE) mice, with or without MGE transplants. In naive and TLE mice, transplanted MGE cells showed comparable migration and process outgrowth. However, in TLE mice with MGE transplants, fewer adult-born Type 3 progenitors migrated ectopically. Furthermore, more Type 3 progenitors survived and migrated into the granule cell layer (GCL), as determined by immunostaining for doublecortin or the thymidine analogue, bromodeoxyuridine (BrdU). To determine whether MGE transplants affected earlier stages of adult neurogenesis, we compared proliferation in the SGZ two-hours after pulse labeling with BrdU in naive vs. TLE mice and found no significant differences. Furthermore, MGE progenitor transplantation had no effect on cell proliferation in the SGZ. Moreover, when compared to naive mice, TLE mice showed increases in inverted Type 1 progenitors and Type 2 progenitors, concomitant with a decrease in the normally oriented radial Type 1 progenitors. Strikingly, these alterations were abrogated by MGE transplantation. Thus, MGE transplants appear to reverse seizure-induced abnormalities in adult neurogenesis by increasing differentiation and radial migration of adult-born granule cell progenitors, outcomes that may ameliorate seizures.


2022 ◽  
Author(s):  
Jesse I Gilmer ◽  
Michael A Farries ◽  
Zachary P Kilpatrick ◽  
Ioannis Delis ◽  
Abigail L Person

Learning plays a key role in the function of many neural circuits. The cerebellum is considered a learning machine essential for time interval estimation underlying motor coordination and other behaviors. Theoretical work has proposed that the cerebellar input recipient structure, the granule cell layer (GCL), performs pattern separation of inputs that facilitates learning in Purkinje cells (P-cells). However, the relationship between input reformatting and learning outcomes has remained debated, with roles emphasized for pattern separation features from sparsification to decorrelation. We took a novel approach by training a minimalist model of the cerebellar cortex to learn complex time-series data from naturalistic inputs, in contrast to traditional classification tasks. The model robustly produced temporal basis sets from naturalistic inputs, and the resultant GCL output supported learning of temporally complex target functions. Learning favored surprisingly dense granule cell activity, yet the key statistical features in GCL population activity that drove learning differed from those seen previously for classification tasks. Moreover, different cerebellar tasks were supported by diverse pattern separation features that matched the demands of the tasks. These findings advance testable hypotheses for mechanisms of temporal basis set formation and predict that population statistics of granule cell activity may differ across cerebellar regions to support distinct behaviors.


2021 ◽  
Vol 15 ◽  
Author(s):  
Lily Wan ◽  
Rou-Jie Huang ◽  
Chen Yang ◽  
Jia-Qi Ai ◽  
Qian Zhou ◽  
...  

Adult hippocampal neurogenesis (AHN) is important for multiple cognitive functions. We sort to establish a minimal or non-invasive radiation approach to ablate AHN using guinea pigs as an animal model. 125I seeds with different radiation dosages (1.0, 0.8, 0.6, 0.3 mCi) were implanted unilaterally between the scalp and skull above the temporal lobe for 30 and 60 days, with the radiation effect on proliferating cells, immature neurons, and mature neurons in the hippocampal formation determined by assessment of immunolabeled (+) cells for Ki67, doublecortin (DCX), and neuron-specific nuclear antigen (NeuN), as well as Nissl stain cells. Spatially, the ablation effect of radiation occurred across the entire rostrocaudal and largely the dorsoventral dimensions of the hippocampus, evidenced by a loss of DCX+ cells in the subgranular zone (SGZ) of dentate gyrus (DG) in the ipsilateral relative to contralateral hemispheres in reference to the 125I seed implant. Quantitatively, Ki67+ and DCX+ cells at the SGZ in the dorsal hippocampus were reduced in all dosage groups at the two surviving time points, more significant in the ipsilateral than contralateral sides, relative to sham controls. NeuN+ neurons and Nissl-stained cells were reduced in the granule cell layer of DG and the stratum pyramidale of CA1 in the groups with 0.6-mCi radiation for 60 days and 1.0 mCi for 30 and 60 days. Minimal cranial trauma was observed in the groups with 0.3– 1.0-mCi radiation at 60 days. These results suggest that extracranial radiation with 125I seed implantation can be used to deplete HAN in a radioactivity-, duration-, and space-controllable manner, with a “non-invasive” stereotactic ablation achievable by using 125I seeds with relatively low radioactivity dosages.


2021 ◽  
Vol 8 (10) ◽  
Author(s):  
Kelsey J. Racicot ◽  
Christina Popic ◽  
Felipe Cunha ◽  
Dominic Wright ◽  
Rie Henriksen ◽  
...  

Domestication is the process by which wild organisms become adapted for human use. Many phenotypic changes are associated with animal domestication, including decreases in brain and brain region sizes. In contrast with this general pattern, the chicken has a larger cerebellum compared with the wild red junglefowl, but what neuroanatomical changes are responsible for this difference have yet to be investigated. Here, we quantified cell layer volumes, neuron numbers and neuron sizes in the cerebella of chickens and junglefowl. Chickens have larger, more folded cerebella with more and larger granule cells than junglefowl, but neuron numbers and cerebellar folding were proportional to cerebellum size. However, chickens do have relatively larger granule cell layer volumes and relatively larger granule cells than junglefowl. Thus, the chicken cerebellum can be considered a scaled-up version of the junglefowl cerebellum, but with enlarged granule cells. The combination of scaling neuron number and disproportionate enlargement of cell bodies partially supports a recent theory that domestication does not affect neuronal density within brain regions. Whether the neuroanatomical changes we observed are typical of domestication or not requires similar quantitative analyses in other domesticated species and across multiple brain regions.


2021 ◽  
pp. 1-15
Author(s):  
Eneritz Rueda-Alaña ◽  
Fernando García-Moreno

The cerebellum is a conserved structure of vertebrate brains that develops at the most anterior region of the alar rhombencephalon. All vertebrates display a cerebellum, making it one of the most highly conserved structures of the brain. Although it greatly varies at the morphological level, several lines of research point to strong conservation of its internal neural circuitry. To test the conservation of the cerebellar circuit, we compared the developmental history of the neurons comprising this circuit in three amniote species: mouse, chick, and gecko. We specifically researched the developmental time of generation of the main neuronal types of the cerebellar cortex. This developmental trajectory is known for the mammalian cell types but barely understood for sauropsid species. We show that the neurogenesis of the GABAergic lineage proceeds following the same chronological sequence in the three species compared: Purkinje cells are the first ones generated in the cerebellar cortex, followed by Golgi interneurons of the granule cell layer, and lately by the interneurons of the molecular layer. In the cerebellar glutamatergic lineage, we observed the same conservation of neurogenesis throughout amniotes, and the same vastly prolonged neurogenesis of granule cells, extending much further than for any other brain region. Together these data show that the cerebellar circuitry develops following a tightly conserved chronological sequence of neurogenesis, which is responsible for the preservation of the cerebellum and its function. Our data reinforce the developmental perspective of homology, whereby similarities in neurons and circuits are likely due to similarities in developmental sequence.


2021 ◽  
Vol 14 ◽  
Author(s):  
Catarina Orcinha ◽  
Antje Kilias ◽  
Enya Paschen ◽  
Marie Follo ◽  
Carola A. Haas

One characteristic feature of mesial temporal lobe epilepsy is granule cell dispersion (GCD), a pathological widening of the granule cell layer in the dentate gyrus. The loss of the extracellular matrix protein Reelin, an important positional cue for neurons, correlates with GCD formation in MTLE patients and in rodent epilepsy models. Here, we used organotypic hippocampal slice cultures (OHSC) from transgenic mice expressing enhanced green fluorescent protein (eGFP) in differentiated granule cells (GCs) to monitor GCD formation dynamically by live cell video microscopy and to investigate the role of Reelin in this process. We present evidence that following treatment with the glutamate receptor agonist kainate (KA), eGFP-positive GCs migrated mainly toward the hilar region. In the hilus, Reelin-producing neurons were rapidly lost following KA treatment as shown in a detailed time series. Addition of recombinant Reelin fragments to the medium effectively prevented the KA-triggered movement of eGFP-positive GCs. Placement of Reelin-coated beads into the hilus of KA-treated cultures stopped the migration of GCs in a distance-dependent manner. In addition, quantitative Western blot analysis revealed that KA treatment affects the Reelin signal transduction pathway by increasing intracellular adaptor protein Disabled-1 synthesis and reducing the phosphorylation of cofilin, a downstream target of the Reelin pathway. Both events were normalized by addition of recombinant Reelin fragments. Finally, following neutralization of Reelin in healthy OHSC by incubation with the function-blocking CR-50 Reelin antibody, GCs started to migrate without any direction preference. Together, our findings demonstrate that normotopic position of Reelin is essential for the maintenance of GC lamination in the dentate gyrus and that GCD is the result of a local Reelin deficiency.


2021 ◽  
Vol 10 (15) ◽  
pp. 3414
Author(s):  
David G. Moreno ◽  
Emma C. Utagawa ◽  
Nicoleta C. Arva ◽  
Kristian T. Schafernak ◽  
Elliott J. Mufson ◽  
...  

Although the prenatal hippocampus displays deficits in cellular proliferation/migration and volume, which are later associated with memory deficits, little is known about the effects of trisomy 21 on postnatal hippocampal cellular development in Down syndrome (DS). We examined postnatal hippocampal neuronal profiles from autopsies of DS and neurotypical (NTD) neonates born at 38-weeks’-gestation up to children 3 years of age using antibodies against non-phosphorylated (SMI-32) and phosphorylated (SMI-34) neurofilament, calbindin D-28k (Calb), calretinin (Calr), parvalbumin (Parv), doublecortin (DCX) and Ki-67, as well as amyloid precursor protein (APP), amyloid beta (Aβ) and phosphorylated tau (p-tau). Although the distribution of SMI-32-immunoreactive (-ir) hippocampal neurons was similar at all ages in both groups, pyramidal cell apical and basal dendrites were intensely stained in NTD cases. A greater reduction in the number of DCX-ir cells was observed in the hippocampal granule cell layer in DS. Although the distribution of Calb-ir neurons was similar between the youngest and oldest NTD and DS cases, Parv-ir was not detected. Conversely, Calr-ir cells and fibers were observed at all ages in DS, while NTD cases displayed mainly Calr-ir fibers. Hippocampal APP/Aβ-ir diffuse-like plaques were seen in DS and NTD. By contrast, no Aβ1–42 or p-tau profiles were observed. These findings suggest that deficits in hippocampal neurogenesis and pyramidal cell maturation and increased Calr immunoreactivity during early postnatal life contribute to cognitive impairment in DS.


2021 ◽  
Vol 13 ◽  
Author(s):  
Youngjae Ryu ◽  
Misato Iwashita ◽  
Wonyoung Lee ◽  
Kenji Uchimura ◽  
Yoichi Kosodo

Aging changes the mechanical properties of brain tissue, such as stiffness. It has been proposed that the maintenance and differentiation of neural stem cells (NSCs) are regulated in accordance with extracellular stiffness. Neurogenesis is observed in restricted niches, including the dentate gyrus (DG) of the hippocampus, throughout mammalian lifetimes. However, profiles of tissue stiffness in the DG in comparison with the activity of NSCs from the neonatal to the matured brain have rarely been addressed so far. Here, we first applied ultrasound-based shear-wave elasticity imaging (SWEI) in living animals to assess shear modulus as in vivo brain stiffness. To complement the assay, atomic force microscopy (AFM) was utilized to determine the Young’s modulus in the hippocampus as region-specific stiffness in the brain slice. The results revealed that stiffness in the granule cell layer (GCL) and the hilus, including the subgranular zone (SGZ), increased during hippocampal maturation. We then quantified NSCs and immature neural cells in the DG with differentiation markers, and verified an overall decrease of NSCs and proliferative/immature neural cells along stages, showing that a specific profile is dependent on the subregion. Subsequently, we evaluated the amount of chondroitin sulfate proteoglycans (CSPGs), the major extracellular matrix (ECM) components in the premature brain by CS-56 immunoreactivity. We observed differential signal levels of CSPGs by hippocampal subregions, which became weaker during maturation. To address the contribution of the ECM in determining tissue stiffness, we manipulated the function of CSPGs by enzymatic digestion or supplementation with chondroitin sulfate, which resulted in an increase or decrease of stiffness in the DG, respectively. Our results illustrate that stiffness in the hippocampus shifts due to the composition of ECM, which may affect postnatal neurogenesis by altering the mechanical environment of the NSC niche.


2021 ◽  
Vol 15 (7) ◽  
pp. 1573-1574
Author(s):  
Zaheer Amjad ◽  
Tazeen Kohari ◽  
Zaffar Malick

Background: Cerebellar cortexconsists of three layers. The outer molecular, middlePurkinje cell layer, inner granule cell layer. Lithium the alkali metal hasdeleterious effects on nervous tissue and this study proved the injurious effects of lithium on molecular cell layer of cerebellum. Aim: To observe and report the damaging histological and morphological change of the decrement in the thickness of cerebellar molecular layer by Lithium. Methods: This study was designed to observe the microscopic changes of thickness of molecular layer in rat cerebellum. For this experimental study 12 animals were used, they were divided into two groups, each comprising of 6 animals. Results: Group-A received normal lab diet and water ad libitum while group B received injectable lithium carbonate 20 mg/kg/ for 4 weeksrespectively. Micrometry was done and changes of the thickness of molecular cell layer were recorded and documented. Conclusion: The pernicious effects of Lithium Carbonate on molecular cerebellar cortex were visualized and evaluated .Highly significantly decreased changes of thickness of molecular cell layer were documented in rat cerebellum. Keywords: Lipidperoxidation,Molecular cell layeratrophy, decomposition


2021 ◽  
Vol 15 (7) ◽  
pp. 1567-1568
Author(s):  
Tazeen Kohari ◽  
Zaheer Amjad ◽  
Zaffar Malick

Background: Cerebellum the hindbrain is located in the posterior cranial fossa.The cerebellar cortex consists, of a gray matter and a white matter and the gray matter comprises of outer molecular layer, middle purkinje cell layer and inner most is the granule cell layer. The antimaniac drug lithium caused distortion to the outer molecular cell layer which was repaired and the damage was lessened by injecting the albino rats with Methylcobalamin. Aim: To observe and document the data of the restored thickness of molecular cell layer after Methylcobalamin administration. Methods: Eighteen albino rats were selected and were treated with lithium and Methylcobalamin for a period of 4 weeks. Results: The results showed regeneration and improved thickness of molecular cell layer stressing the need for educating our masses in dietary use of vitamin b12 and the consultants to prescribe Methylcobalamin in neuronal injuries. Conclusion: My study proved that the use of vitamin b12 is mandatory in strengthening and restoring the cerebellar molecular gray matter. Keywords: Cerebellar molecular cell layer,Degeneration, Regeneration


Sign in / Sign up

Export Citation Format

Share Document