Assessment of the renewable energy generation towards net-zero energy buildings: A review

2021 ◽  
pp. 111755
Author(s):  
Asam Ahmed ◽  
Tianshu Ge ◽  
Jinqing Peng ◽  
Wei-Cheng Yan ◽  
Boon Tuan Tee ◽  
...  
Author(s):  
Kate Anderson ◽  
Samuel Booth ◽  
Kari Burman ◽  
Michael Callahan

Net zero energy is a concept of energy self-sufficiency based on minimized demand and use of local renewable energy resources. A net zero energy military installation is defined as: “A military installation that produces as much energy on-site from renewable energy generation or through the on-site use of renewable fuels, as it consumes in its buildings, facilities, and fleet vehicles.” [1] The National Renewable Energy Laboratory (NREL) developed a comprehensive, first-of-its-kind strategy for evaluating a military installation’s potential to achieve net zero energy status, including an assessment of baseline energy use, energy use reduction opportunities from efficiency or behavior changes, renewable energy generation opportunities, electrical systems analysis of renewable interconnection, microgrid potential, and transportation energy savings. This paper describes NREL’s net zero energy assessment strategy and provides a planning guide for other organizations interested in evaluating net zero potential. We also present case studies and describe lessons learned from NREL’s net zero energy assessments at seven installations, including the importance of enforcing and funding mandates, providing leadership support, collecting accurate data, and selecting appropriate technologies. Finally, we evaluate whether the net zero concept is a useful framework for analyzing an energy strategy and a reasonable goal.


2013 ◽  
Vol 38 (3) ◽  
pp. 7-14
Author(s):  
Laura Aelenei ◽  
Daniel Aelenei ◽  
Helder Gonçalves ◽  
Roberto Lollini ◽  
Eike Musall ◽  
...  

Net Zero-Energy Buildings (NZEBs) have received increased attention in recent years as a result of constant concerns about energy supply constraints, decreasing energy resources, increasing energy costs and the rising impact of greenhouse gases on world climate. Promoting whole building strategies that employ passive measures together with energy efficient systems and technologies using renewable energy became a European political strategy following the publication of the Energy Performance of Buildings Directive recast in May 2010 by the European Parliament and Council. However designing successful NZEBs represents a challenge because the definitions are somewhat generic while assessment methods and monitoring approaches remain under development and the literature is relatively scarce about the best sets of solutions for different typologies and climates likely to deliver an actual and reliable performance in terms of energy balance (consumed vs generated) on a cost-effective basis. Additionally the lessons learned from existing NZEB examples are relatively scarce. The authors of this paper, who are participants in the IEA SHC Task 40-ECBCS Annex 52, “Towards Net Zero Energy Solar Buildings”, are willing to share insights from on-going research work on some best practice leading NZEB residential buildings. Although there is no standard approach for designing a Net Zero-Energy Building (there are many different possible combinations of passive and efficient active measures, utility equipment and on-site energy generation technologies able to achieve the net-zero energy performance), a close examination of the chosen strategies and the relative performance indicators of the selected case studies reveal that it is possible to achieve zero-energy performance using well known strategies adjusted so as to balance climate driven-demand for space heating/cooling, lighting, ventilation and other energy uses with climate-driven supply from renewable energy resources.


Author(s):  
Paul Torcellini ◽  
Shanti Pless ◽  
Chad Lobato ◽  
Tom Hootman

Until recently, large-scale, cost-effective net-zero energy buildings (NZEBs) were thought to lie decades in the future. However, ongoing work at the National Renewable Energy Laboratory (NREL) indicates that NZEB status is both achievable and repeatable today. This paper presents a definition framework for classifying NZEBs and a real-life example that demonstrates how a large-scale office building can cost-effectively achieve net-zero energy. The vision of NZEBs is compelling. In theory, these highly energy-efficient buildings will produce, during a typical year, enough renewable energy to offset the energy they consume from the grid. The NREL NZEB definition framework classifies NZEBs according to the criteria being used to judge net-zero status and the way renewable energy is supplied to achieve that status. We use the new U.S. Department of Energy/NREL 220,000-ft2 Research Support Facilities (RSF) building to illustrate why a clear picture of NZEB definitions is important and how the framework provides a methodology for creating a cost-effective NZEB. The RSF, scheduled to open in June 2010, includes contractual commitments to deliver a Leadership in Energy Efficiency and Design (LEED) Platinum Rating, an energy use intensity of 25 kBtu/ft2 (half that of a typical LEED Platinum office building), and net-zero energy status. We will discuss the analysis method and cost tradeoffs that were performed throughout the design and build phases to meet these commitments and maintain construction costs at $259/ft2. We will discuss ways to achieve large-scale, replicable NZEB performance. Many passive and renewable energy strategies are utilized, including full daylighting, high-performance lighting, natural ventilation through operable windows, thermal mass, transpired solar collectors, radiant heating and cooling, and workstation configurations allow for maximum daylighting. This paper was prepared by the client and design teams, including Paul Torcellini, PhD, PE, Commercial Building Research Group Manager with NREL; Shanti Pless and Chad Lobato, Building Energy Efficiency Research Engineers with NREL; David Okada, PE, LEED AP, Associate with Stantec; and Tom Hootman, AIA, LEED AP, Director of Sustainability with RNL.


Sign in / Sign up

Export Citation Format

Share Document