Optimized composite piezoelectric energy harvesting floor tile for smart home energy management

2018 ◽  
Vol 171 ◽  
pp. 31-37 ◽  
Author(s):  
Kyung-Bum Kim ◽  
Jae Yong Cho ◽  
Hamid Jabbar ◽  
Jung Hwan Ahn ◽  
Seong Do Hong ◽  
...  
2019 ◽  
Vol 86 (1) ◽  
pp. 14-24 ◽  
Author(s):  
Manel Zouari ◽  
Slim Naifar ◽  
Ghada Bouattour ◽  
Nabil Derbel ◽  
Olfa Kanoun

AbstractSelf-powered energy management circuits make energy harvesting converters more efficient and more reliable. This paper presents an improvement of a Maximum Power Point Tracking (MPPT) technique applied on a Parallel Synchronized Switch Harvesting on Inductor (P-SSHI) technique for piezoelectric vibration converters. The aims are to detect the unstable vibrational state, optimize the output voltage and maximize the output power of the piezoelectric transducer.First, the P-SSHI technique is implemented without an MPPT technique. Then, an MPPT technique based on Fractional Open Circuit (FOC) voltage method is implemented. An improvement of the FOC method is proposed to enhance the capability of the Piezoelectric Energy Harvesting (PEH) system. The comparison between different simulation results shows that by using the same input parameters, the maximum efficiency for the PEH system based on the P-SSHI technique implemented without MPPT is 8.82 % whereas the maximum efficiency of the system based on the (FOC) voltage MPPT method is 13.77 %. A significant improvement of the PEH system is obtained by using the modified (FOC) method, where the efficiency reached 24.59 %.


2020 ◽  
Vol 59 (SP) ◽  
pp. SPPD04
Author(s):  
S. Aphayvong ◽  
T. Yoshimura ◽  
S. Murakami ◽  
K. Kanda ◽  
N. Fujimura

Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3512 ◽  
Author(s):  
Corina Covaci ◽  
Aurel Gontean

The goal of this paper is to review current methods of energy harvesting, while focusing on piezoelectric energy harvesting. The piezoelectric energy harvesting technique is based on the materials’ property of generating an electric field when a mechanical force is applied. This phenomenon is known as the direct piezoelectric effect. Piezoelectric transducers can be of different shapes and materials, making them suitable for a multitude of applications. To optimize the use of piezoelectric devices in applications, a model is needed to observe the behavior in the time and frequency domain. In addition to different aspects of piezoelectric modeling, this paper also presents several circuits used to maximize the energy harvested.


Sign in / Sign up

Export Citation Format

Share Document