scholarly journals Robust optimal design of energy supply systems under uncertain energy demands based on a mixed-integer linear model

Energy ◽  
2018 ◽  
Vol 153 ◽  
pp. 159-169 ◽  
Author(s):  
Ryohei Yokoyama ◽  
Akira Tokunaga ◽  
Tetsuya Wakui
Author(s):  
Ryohei Yokoyama ◽  
Ryo Nakamura ◽  
Tetsuya Wakui ◽  
Yuji Shinano

In designing energy supply systems, designers are requested to rationally determine equipment types, capacities, and numbers in consideration of equipment operational strategies corresponding to seasonal and hourly variations in energy demands. However, energy demands have some uncertainty at the design stage, and the energy demands which become certain at the operation stage may differ from those estimated at the design stage. Therefore, designers should consider that energy demands have some uncertainty, evaluate the performance robustness against the uncertainty, and design the systems to heighten the robustness. Especially, this issue is important for cogeneration plants, because their performances depend significantly on both heat and power demands. Although robust optimal design methods of energy supply systems under uncertain energy demands were developed, all of them are based on linear models for energy supply systems. However, it is still a hard challenge to develop a robust optimal design method even based on a mixed-integer linear model. At the first step for this challenge, in this paper, a method of evaluating the performance robustness of energy supply systems under uncertain energy demands is proposed based on a mixed-integer linear model. This problem is formulated as a bilevel mixed-integer linear programming one, and a sequential solution method is applied to solve it approximately by discretizing uncertain energy demands within their intervals. In addition, a hierarchical optimization method in consideration of the hierarchical relationship between design and operation variables is applied to solve large scale problems efficiently. Through a case study on a gas turbine cogeneration plant for district energy supply, the validity and effectiveness of the proposed method and features of the performance robustness of the plant are clarified.


Author(s):  
Ryohei Yokoyama ◽  
Masashi Ohkura ◽  
Tetsuya Wakui

In designing energy supply systems, designers should consider that energy demands and costs as parameters have some uncertainties, evaluate the robustness in system performances against the uncertainties, and design the systems rationally to heighten the robustness. A robust optimal design method of energy supply systems under only uncertain energy demands was revised so that it can be applied to systems with complex configurations and large numbers of periods for variations in energy demands. In addition, a method of comparing performances of two energy supply systems under only uncertain energy demands was proposed by utilizing a part of the revised robust optimal design method. In this paper, the revised robust optimal design method as well as the proposed performance comparison method are extended so that they can be applied to the robust optimal design and the performance comparison of energy supply systems under not only uncertain energy demands but also uncertain energy costs. Through a case study on a gas turbine cogeneration system for district energy supply, the validity and effectiveness of the extended optimal design method and features of the robust optimal design are clarified. In addition, the gas turbine cogeneration system is compared with a conventional energy supply system using the extended performance comparison method.


Sign in / Sign up

Export Citation Format

Share Document