A refined analysis for the transversely isotropic plate under tangential loads by the 3D Green's function

2018 ◽  
Vol 93 ◽  
pp. 10-20 ◽  
Author(s):  
Peng-Fei Hou ◽  
Jia-Yun Chen
2002 ◽  
Vol 8 (2) ◽  
pp. 151-159 ◽  
Author(s):  
F. Ahmad ◽  
N. Kiyani ◽  
F. Yousaf ◽  
M. Shams

Dispersion relations are obtained for the propagation of symmetric and antisymmetric modes in a free transversely isotropic plate. Dispersion curves are plotted for the first four symmetric modes for a magnesium plate immersed in water. The first mode is highly damped and switches over to the second mode when the normalized frequency exceeds 12.


1979 ◽  
Vol 46 (3) ◽  
pp. 551-556 ◽  
Author(s):  
Y.-C. Pan ◽  
T.-W. Chou

Closed-form solutions are obtained for the Green’s function problems of point forces applied in the interior of a two-phase material consisting of two semi-infinite transversely isotropic elastic media bonded along a plane interface. The interface is parallel to the plane of isotropy of both media. The solutions are applicable to all combinations of elastic constants. The present solution reduces to Sueklo’s expression when the point force is normal to the plane of isotropy and (C11C33)1/2 ≠ C13 + 2C44 for both phases. When the elastic constants of one of the phases are set to zero, the solution can be reduced to the Green’s function for semi-infinite media obtained by Michell, Lekhnitzki, Hu, Shield, and Pan and Chou. The Green’s function solution of Pan and Chou for an infinite transversely isotropic solid can be reproduced from the present expression by setting the elastic constants of both phases to be equal. Finally, the Green’s function for isotropic materials can also be obtained from the present solution by suitable substitution of elastic constants.


2010 ◽  
Vol 329 (17) ◽  
pp. 3596-3605 ◽  
Author(s):  
G.T. Piliposian ◽  
M.V. Belubekyan ◽  
K.B. Ghazaryan

Sign in / Sign up

Export Citation Format

Share Document