isotropic plate
Recently Published Documents


TOTAL DOCUMENTS

241
(FIVE YEARS 36)

H-INDEX

20
(FIVE YEARS 2)

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Anjibabu Merneedi ◽  
Nalluri Mohan Rao ◽  
L. Natrayan ◽  
L. Yuvaraj ◽  
Prabhu Paramasivam

This research paper deals with a numerical method which is modified and applied, by the authors to derive an eigenvalue of a thick plate having cut-out in which geometries of plate and cut-outs are different, through a deflection matching condition by including shear deformation and rotary inertia effects, with less computational efforts and high accuracy. The modified Independent Coordinate Coupling Method (ICCM) is validated with FEM package (ANSYS) and applied to know the change in eigenvalues for a plate with cut-out by varying various parameters like aspect ratios, cut-out size, and thickness ratios. Trigonometric functions considered at the boundary level conditions of a simply supported plate should be satisfied. Free vibrational exploration on a thick isotropic plate with various aspect ratios and an elliptical plate with various sizes is carried out through the modified ICCM. Independent coordinates are applied for a plate domain and for a hole domain individually followed by equating the deflection condition of hole and plate, a reduced mass to express with cut-out from which eigenvalues can be obtained. The deflection matching condition facilitates the analysis even though the geometries of plate and cut-outs are different.


2021 ◽  
pp. 157-161
Author(s):  
Ж.В. Маленко ◽  
А.А. Ярошенко

В статье проводятся исследования колебаний плавающего ледяного покрова под действием движущихся возмущений. В основу колебаний плавающего ледяного покрова положены линеаризованные уравнения гидромеханики и линейная классическая теория колебаний пластин. Ледяной покров рассматривается как тонкая упругая изотропная пластинка. Анализируются образующиеся при этом трехмерные изгибно-гравитационные волны. Показано, что при движении источника возмущений со скоростью 0<v<v0 изгибно-гравитационные волны не образуются, а наблюдается статический прогиб. Здесь v0 – минимальное значение фазовой скорости. При скорости движения v0<v<v1 образуется одна система изгибно-гравитационных волн. Эти волны распространяются как впереди, так и за источником возмущений. Волны, бегущие впереди источника, обусловлены упругими и массовыми силами пластинки. Волны, распространяющиеся за источником, имеют характер гравитационной волны для чистой воды. При v1<v<(gH)1/2 образуется три системы волн. Упругие волны распространяются впереди источника. Две другие волны распространяются за источником и носят характер поперечной и продольной корабельных волн. При v>(gH)1/2 образуются впереди источника упругие волны, а за источником продольные корабельные волны. Исследовано влияние скорости перемещения нагрузки на амплитуды образующихся волн. The article studies the fluctuations of the floating ice cover under the action of moving perturbations. The vibrations of the floating ice cover are based on the linearized equations of hydro-mechanics and the linear classical theory of plate vibrations. The ice sheet is considered as a thin elastic isotropic plate. The resulting three-dimensional bending-gravity waves are analyzed. It is shown that when the source of disturbances moves at a speed of 0<v<v0, bending-gravitational waves are not formed, but a static deflection is observed. Here v0is the minimum value of the phase velocity. At the speed of motion v0<v<v1, a single system of bending-gravitational waves is formed. These waves propagate both ahead and behind the source of the disturbances. The waves traveling ahead of the source are caused by the elastic and mass forces of the plate. The waves propagating behind the source have the character of a gravitational wave for pure water. At v1<v<(gH)1/2, three wave systems are formed. Elastic waves propagate ahead of the source. The other two waves propagate behind the source and have the character of transverse and longitudinal ship waves. At v>(gH)1/2, elastic waves are formed in front of the source, and longitudinal ship waves are formed behind the source. The influence of the load displacement velocity on the amplitudes of the generated waves is investigated.


Author(s):  
Eteri Hart ◽  
Terokhin Bohdan

Computer simulation of the stress-strain state of a thin rectangular homogeneous isotropic plate with a circular hole, reinforced by an annular inclusion made of a functional-gradient material (FGM) has been carried out. The influence of the geometric (width) and mechanical (elastic modulus) parameters of the inclusion is investigated when various laws of change in the elastic modulus of the FGM are set on the stress concentration around the hole. Recommendations for the use of inclusions are given. If there is a "hard" annular inclusion in a homogeneous plate with a hole, it is expedient to use an FGM with a nonlinear law of change in the modulus of elasticity in comparison with an inclusion made of a homogeneous material. Despite the fact that the inclusion leads to a slight increase in the stress concentration factor in comparison with a homogeneous material, it makes it possible to increase the rigidity of the system as a whole. The width of FGM inclusions affects the nature of the stress distribution: the wider the inclusion, the more smoothly the stress redistribution in the main matrix occurs.


Author(s):  
Marina Mozgaleva ◽  
Pavel Akimov ◽  
Taymuraz Kaytukov

Localization of solution of the problem of isotropic plate analysis with the use of B-spline discrete-continual finiteelement method (specificversion of wavelet-based discrete-continual finiteelement method) is under consideration in the distinctive paper. The original operational continual and discrete-continual formulations of the problem are given, some actual aspects of construction of normalized basis functions of a B-spline are considered, the corresponding local constructions for an arbitrary discrete-continual finiteelement are described, some information about the numerical implementation and an example of analysis are presented.


Author(s):  
Alexey Voropay ◽  
Pavel Yegorov

The nonstationary loading of a mechanical system consisting of a rectangular elastic isotropic plate and an additional viscoelastic support is investigated. The main attention is devoted to taking into account the mass and inertial characteristics of the additional viscoelastic support during modeling. As the main object, to which an additional support is attached, a plate of medium thickness within the framework of Timoshenko's hypotheses is considered. Since the focus of the paper is on the influence of the additional support, the plate itself is assumed to be hinged for simplicity of its model. We point out that the results presented are applicable to other objects that have additional supports (beams, plates and shells, which can have different supports along the contour and different shapes in plan). Nonstationary deformation is caused by the application of an external transverse disturbing load to the plate. The influence of the additional support on the deformation of the plate is replaced by the application of an unknown additional variable concentrated force, which, in fact, is the reaction of interaction between the plate and the additional support. The determination of this unknown reaction is reduced to solving the first kind Volterra integral equation. In this work, the main analytical relations for obtaining integral equations or their systems are derived, and an algorithm for their solving is presented. The results of calculations for specific numerical values are described. Moreover, the effect of an additional viscoelastic support on the plate is considered, both with and without taking into account the mass and inertial characteristics of the support. It is shown that for small masses the effect is practically absent, which can serve as an indirect proof of the correctness of the model obtained. As the main conclusion, it can be pointed out that the mass and inertial characteristics of the additional viscoelastic support have a noticeable effect on the vibration process, on both the amplitude and phase characteristics.


Sign in / Sign up

Export Citation Format

Share Document