Particle swarm optimization for solving engineering problems: A new constraint-handling mechanism

2013 ◽  
Vol 26 (4) ◽  
pp. 1263-1273 ◽  
Author(s):  
Issam Mazhoud ◽  
Khaled Hadj-Hamou ◽  
Jean Bigeon ◽  
Patrice Joyeux
2013 ◽  
Vol 46 (11) ◽  
pp. 1465-1484 ◽  
Author(s):  
Weian Guo ◽  
Wuzhao Li ◽  
Qun Zhang ◽  
Lei Wang ◽  
Qidi Wu ◽  
...  

Author(s):  
Wen Fung Leong ◽  
Gary G. Yen

In this article, the authors propose a particle swarm optimization (PSO) for constrained optimization. The proposed PSO adopts a multiobjective approach to constraint handling. Procedures to update the feasible and infeasible personal best are designed to encourage finding feasible regions and convergence toward the Pareto front. In addition, the infeasible nondominated solutions are stored in the global best archive to exploit the hidden information for guiding the particles toward feasible regions. Furthermore, the number of feasible personal best in the personal best memory and the scalar constraint violations of personal best and global best are used to adapt the acceleration constants in the PSO flight equations. The purpose is to find more feasible particles and search for better solutions during the process. The mutation procedure is applied to encourage global and fine-tune local searches. The simulation results indicate that the proposed constrained PSO is highly competitive, achieving promising performance.


2010 ◽  
Vol 1 (1) ◽  
pp. 42-63 ◽  
Author(s):  
Wen Fung Leong ◽  
Gary G. Yen

In this article, the authors propose a particle swarm optimization (PSO) for constrained optimization. The proposed PSO adopts a multiobjective approach to constraint handling. Procedures to update the feasible and infeasible personal best are designed to encourage finding feasible regions and convergence toward the Pareto front. In addition, the infeasible nondominated solutions are stored in the global best archive to exploit the hidden information for guiding the particles toward feasible regions. Furthermore, the number of feasible personal best in the personal best memory and the scalar constraint violations of personal best and global best are used to adapt the acceleration constants in the PSO flight equations. The purpose is to find more feasible particles and search for better solutions during the process. The mutation procedure is applied to encourage global and fine-tune local searches. The simulation results indicate that the proposed constrained PSO is highly competitive, achieving promising performance.


2021 ◽  
Vol 10 (6) ◽  
pp. 3422-3431
Author(s):  
Issa Ahmed Abed ◽  
May Mohammed Ali ◽  
Afrah Abood Abdul Kadhim

In this paper the benchmarking functions are used to evaluate and check the particle swarm optimization (PSO) algorithm. However, the functions utilized have two dimension but they selected with different difficulty and with different models. In order to prove capability of PSO, it is compared with genetic algorithm (GA). Hence, the two algorithms are compared in terms of objective functions and the standard deviation. Different runs have been taken to get convincing results and the parameters are chosen properly where the Matlab software is used. Where the suggested algorithm can solve different engineering problems with different dimension and outperform the others in term of accuracy and speed of convergence.


Sign in / Sign up

Export Citation Format

Share Document