Analysis of stress intensity factors in railway wheel under the influence of stress field due to heat treatment and press-fitting process

2021 ◽  
Vol 130 ◽  
pp. 105736
Author(s):  
Karim Aliakbari ◽  
Shahab Kamel Abbasnia ◽  
Reza Masoudi Nejad ◽  
Mohsen Manoochehri
2005 ◽  
Vol 40 (8) ◽  
pp. 785-800 ◽  
Author(s):  
B Zuccarello ◽  
S Ferrante

A new systematic experimental procedure has been developed to obtain the stress intensity factors governing the singular stress field that occurs near the intersection between the interface and free edges of bimaterial joints. A preliminary theoretical study of the singular stress field is carried out by the well-known Airy stress function method. The obtained stress laws are properly combined with the basic law of photoelasticity in order to define a procedure that permits the zone dominated by the singularity to be located and the stress intensity factors (SIFs) to be computed on the basis of full field data provided from automated photoelasticity. In particular, a systematic error analysis is used to determine the model zone where the experimental data have to be collected in order to obtain accurate SIF evaluation. As an example, the proposed method is applied to determine the SIFs of various aluminium/ PSM-1 specimens under different external loading conditions using Fourier transform photoelasticity. The experimental results have been compared to those obtained by an independent procedure, based on a boundary element approach, in order to validate the accuracy of the proposed procedure.


2006 ◽  
Vol 324-325 ◽  
pp. 855-858
Author(s):  
Q. Wang ◽  
X. F. Sun ◽  
Kimihiro Ozaki

In this paper, the strength of the singular stress field near the ends of the CNTs in composites was analyzed to clarify the effects of the CNT length on stress filed in the CNT reinforced composites when studying the fracture toughness. The singular stress field was separated into two types of singularities, symmetric and skew-symmetric, near the ends of CNTs according to the deformation and loading types. The stress intensity factors of the singular stress field were calculated for these two types of singularities. The effects of the CNT length in CNT reinforced composites on these stress intensity factors were investigated.


Author(s):  
Hyung Jip Choi ◽  
Glaucio H. Paulino

An analysis of a coupled plane elasticity problem of crack/contact mechanics for a coating/substrate system with functionally graded properties is performed, where the rigid flat punch slides over the surface of the coated system that contains a crack. The graded material is treated as a non-homogeneous interlayer between dissimilar, homogeneous phases of the coated medium and the crack is assumed to exist along the interface between the interlayer and the substrate. Based on the Fourier integral transform method and the transfer matrix approach, formulation of the current coupled mixed boundary value problem lends itself to the derivation of a set of three simultaneous Cauchy-type singular integral equations. In the numerical results, the emphasis is placed on the investigation of interactions between the contact stress field and the crack-tip behaviour for various combinations of material, geometric and loading parameters of the coated system. Specifically, effects of interfacial cracking on the distributions of the contact pressure and the in-plane stress component along the coating surface are examined and the mixed-mode stress intensity factors evaluated from the crack-tip stress field with the square-root singularity are provided as a function of punch location. Further addressed is the quantification of the singular character of contact pressure distributions at the trailing and leading edges of the flat punch in terms of the punch-edge stress intensity factors. Implicit in this particular analysis of the coupled crack/contact problem presented henceforth is that the crack closure behaviour under the compressive contact stress field is not taken into account, ignoring the influence of crack-face contact and friction.


2005 ◽  
Vol 44 (2) ◽  
pp. 168-177 ◽  
Author(s):  
S.T. Pinho ◽  
H.B. Martins ◽  
P.P. Camanho ◽  
M.H. Santare ◽  
P.M.S.T. de Castro

Sign in / Sign up

Export Citation Format

Share Document