Energy release rate cannot predict crack initiation orientation in domains with a sharp V-notch under mode III loading

2015 ◽  
Vol 141 ◽  
pp. 230-241 ◽  
Author(s):  
Brigit Mittelman ◽  
Zohar Yosibash
1981 ◽  
Vol 48 (1) ◽  
pp. 194-195
Author(s):  
C. Yatomi

We show that for a Mode III crack starting from the apex of a wedge, the initial value of the energy-release rate is zero, although the stresses at the crack tip are unbounded.


1995 ◽  
Vol 29 (16) ◽  
pp. 2108-2133 ◽  
Author(s):  
B. D. Davidson ◽  
R. Kruger ◽  
M. König

Results are presented from a theoretical investigation of the effects of stacking sequence on the energy release rate in laminated composite end-notched flexure test specimens. Deflections and energy release rates of unidirectional and multidirectional ENF specimens are obtained by classical laminated plate theory, shear deformable plate theory, and three dimensional finite element analyses. It is shown that the distribution of energy release rate varies across the front of an initially straight delamination. The percentage of mode II and mode III energy release rates for the specimen, as well as the local peak values of the mode II, mode III and total energy release rates that occur at the specimen's free edges are shown to correlate with a nondimensional ratio comprised of the specimen's flexural rigidities. The results of the study are used as a basis for a proposed “ENF test design procedure” that may be used for the determination of appropriate specimen stacking sequences and test geometries for studying delamination growth at interfaces between plies at various orientations. The test design procedure minimizes the contributions to the energy release rate from residual thermal stresses, geometric nonlinearities, local mode II concentrations at the specimen's free edges and local mode III effects.


Sign in / Sign up

Export Citation Format

Share Document