plate theory
Recently Published Documents


TOTAL DOCUMENTS

1762
(FIVE YEARS 319)

H-INDEX

75
(FIVE YEARS 8)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 653
Author(s):  
Jinguang Zhang ◽  
Jun Rao ◽  
Lei Ma ◽  
Xianglong Wen

In this paper, based on the composite laminated plate theory and a strain energy model, the damping capacity of a Carbon Fiber Reinforced Plastics (CFRP) raft frame was studied. According to the finite element analysis (FEA) and damping ratio prediction model, the influences of different layups on the damping capacity of the raft frame and its components (top/bottom plate and I-support) were discussed. Comparing the FEA results with the test results, it can be figured out that the CFRP laminate layup has a great influence on the damping ratio of the raft frame, and the maximum error of the first-order natural frequency and damping ratio of the top/bottom plate were 5.6% and 15.1%, respectively. The maximum error of the first-order natural frequency of the I-support between the FEA result and the test result was 7.5%, suggesting that because of the stress concentration, the error of the damping ratio was relatively large. As for the raft frame, the damping performance was affected by the I-support arrangement and the simulation analysis was in good agreement with the experimental results. This study can provide a useful reference for improving the damping performance of CFRP raft frames.


2022 ◽  
Vol 28 (1) ◽  
pp. 86-107
Author(s):  
Hussein A. Hashim ◽  
Ibtehal Abbas Sadiq

This research is devoted to investigating the thermal buckling analysis behaviour of laminated composite plates subjected to uniform and non-uniform temperature fields by applying an analytical model based on a refined plate theory (RPT) with five unknown independent variables. The theory accounts for the parabolic distribution of the transverse shear strains through the plate thickness and satisfies the zero-traction boundary condition on the surface without using shear correction factors; hence a shear correction factor is not required. The governing differential equations and associated boundary conditions are derived by using the virtual work principle and solved via Navier-type analytical procedure to obtain critical buckling temperature. Results are presented for: uniform and linear cross-ply lamination with symmetry and antisymmetric stacking, simply supported boundary condition, different aspect ratio (a/b), various orthogonality ratio (E1/E2), varying ratios of coefficient of uniform and linear thermal expansion (α2⁄α1), uniform and linearly varying temperature thickness ratio (a/h) and numbers of layers on thermal buckling of the laminated plate. It can be concluded that this theory gives good results compared to other theories.


2021 ◽  
Vol 6 (4) ◽  
Author(s):  
Festus C. Onyeka ◽  
Chidoebere D. Nwa-David ◽  
Emmanuel E. Arinze

This presents the static flexural analysis of a three edge simply supported, one support free (SSFS) rectangular plate under uniformly distributed load using a refined shear deformation plate theory. The shear deformation profile used, is in the form of third order. The governing equations were determined by the method of energy variational calculus, to obtain the deflection and shear deformation along the direction of x and y axis. From the formulated expression, the formulars for determination of the critical lateral imposed load of the plate before deflection reaches the specified maximum specified limit  and its corresponding critical lateral imposed load before plate reaches an elastic yield stress  is established. The study showed that the critical lateral imposed load decreased as the plates span increases, the critical lateral imposed load increased as the plate thickness increases, as the specified thickness of the plate increased, the value of critical lateral imposed load increased and increase in the value of the allowable deflection value required for the analysis of the plate reduced the chances of failure of a structural member. This approach overcomes the challenges of the conventional practice in the structural analysis and design which involves checking of deflection and shear after design; the process which is proved unreliable and time consuming. It is concluded that the values of critical lateral load obtained by this theory achieve accepted transverse shear stress to the depth of the plate variation in predicting the flexural characteristics for an isotropic rectangular SSFS plate. Numerical comparison was conducted to verify and demonstrate the efficiency of the present theory, and they agreed with previous studies. This proved that the present theory is reliable for the analysis of a rectangular plate. Keywords— Allowable deflection, critical imposed load, energy method, plate theories, shear deformation, SSFS rectangular plate


Author(s):  
Farzaneh Rabiee ◽  
Ali Asghar Jafari

In the present study, the nonlinear forced vibration of a rectangular plate is investigated analytically using modified multiple scales method for the first time. The plate is subjected to transversal harmonic excitation, and the boundary condition is assumed to be simply supported. The von Karman nonlinear strain displacement relations are used. The extended Hamilton principle and classical plate theory are applied to derive the partial differential equations of motions. This research focuses on resonance case with 3:1 internal resonance. By applying Galerkin method, the nonlinear partial differential equations are transformed into time dependent nonlinear ordinary differential equations, which are then solved analytically by modified multiple scales method. This proposed approach is very simple and straightforward. The obtained results are then compared with both the traditional multiple scales method and previous studies, and excellent compatibility is noticed. The effect of some of the main parameters of the system is also examined.


2021 ◽  
Vol 12 (1) ◽  
pp. 230
Author(s):  
Haonan Li ◽  
Wei Wang ◽  
Linquan Yao

Rotating machinery has significant applications in the fields of micro and nano meters, such as nano-turbines, nano-motors, and biomolecular motors, etc. This paper takes rotating nano-annular plates as the research object to analyze their free vibration behaviors. Firstly, based on Kirchhoff plate theory, Mindlin plate theory, and Reddy plate theory, combined with nonlocal constitutive relations, the differential motion equations of rotating functionally graded nano-annular plates in a thermal environment are derived. Subsequently, the numerical method is used to discretize and solve the motion equations. The effects of nonlocal parameter, temperature change, inner and outer radius ratio, and rotational velocity on the vibration frequencies of the nano-annular plates are analyzed through numerical examples. Finally, the relationship between the fundamental frequencies and the thickness-to-radius ratio of the nano-annular plates of clamped inner and outer rings is discussed, and the differences in the calculation results among the three plate theories are compared.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 119
Author(s):  
Hong-Jun Noh ◽  
Hun-Bong Lim ◽  
Hee-Chan Yoon ◽  
Young-Hwan Han ◽  
Hyun-Ik Yang

In the shipbuilding industry, welding is the main technique used to join steel structures. There is a lifting process, post-welding, that can eliminate the correction effect of line heating. Line heating is reperformed after the lifting process. This can significantly delay the ship assembly process. Herein, we present a design method for installing a permanent stiffener to avoid the disappearance of the line heating effect during the lifting process. The change in physical properties due to heating and cooling of the line heating is calculated. The limiting stress, at which the effect of the line heating completely disappears, based on the inherent strain theory, is obtained. The phase fraction by the cooling rate is calculated using the continuous cooling transformation diagram and the Kiustinen–Marburgerm equation. Physical properties affected by the phase transformation are calculated, considering the physical properties and fraction of each phase. The square plate theory and superposition principle are used to construct a local model, with a stiffener, of the ship block. The stress caused by the shape of the stiffener and the distance between the stiffeners were calculated for the local model. The calculated stress and the limiting stress were compared to determine, for the expected line heating efficiency, the most acceptable stiffener design. Finally, to confirm the elimination of the problem, the designed stiffener is analyzed using the finite element method.


Author(s):  
Bhupesh K Chandrakar ◽  
NK Jain ◽  
Ankur Gupta

The present work aims to study the non-linear vibrations in a cracked orthotropic tapered micro-plate. Linear and parabolic variation in the plate thickness is assumed in one as well as two directions. The partial crack is located in the centre, and it is continuous; this crack’s location is arbitrary and can be varied within the centre-line. Based on classical plate theory, the equilibrium principle is applied, and the governing equation of tapered orthotropic plate is derived. Additionally, the microstructure’s effect has been included in the governing equation using the non-classical modified couple stress theory. The simplified line spring model is used to consider the impact of partial crack on the plate dynamics and is incorporated using in-plane forces and bending moments. The introduction of Berger’s formulation brings the non-linearity in the model in terms of in-plane forces. Here, Galerkin’s method has been chosen for converting the derived governing equation into time-dependent modal coordinates, which uses an approximate solution technique to solve the non-linear Duffing equation. The crack is considered along the fibres and across the fibres to show the effect of orthotropy. Results are presented for an orthotropic cracked plate with non-uniform thickness. The effects of the variation of taper constants, crack location, crack length, internal material length scale parameter on the fundamental frequency are obtained for two different boundary conditions. The non-linear frequency response curves are plotted to show the effect of non-linearity on the system dynamics using the method of multiple scales, and the contribution of taper constants and crack parameters on non-linearity is shown with bending-hardening and bending-softening phenomenon. It has been found that vibration characteristics are affected by the taper parameters and fibre direction for a cracked orthotropic plate.


2021 ◽  
Vol 137 (1) ◽  
Author(s):  
Joseph Ackermann ◽  
Paul-Qiuyang Qu ◽  
Loïc LeGoff ◽  
Martine Ben Amar
Keyword(s):  

2021 ◽  
Vol 5 (6) ◽  
pp. 916-928
Author(s):  
F. C. Onyeka ◽  
B. O. Mama

In this paper, an analytical three-dimensional (3D) bending characteristic of an isotropic rectangular thick plate with all edges simply supported (SSSS) and carrying uniformly distributed transverse load using the energy technique is presented. The three-dimensional constitutive relations which involves six stress components were used in the established, refined shear deformation theory to obtain a total potential energy functional. This theory obviates application of the shear correction factors for the solution to the problem. The governing equation of a thick plate was obtained by minimizing the total potential energy functional with respect to the out of plane displacement. The deflection functions which are in form of trigonometric were obtained as the solution of the governing equation. These deflection functions which are the product of the coefficient of deflection and shape function of the plate were substituted back into the energy functional, thereafter a realistic formula for calculating the deflection and stresses were obtained through minimizations with respect to the rotations and deflection coefficients. The values of the deflections and stresses obtained herein were tabulated and compared with those of previous 3D plate theory, refined plate theories and, classical plate theory (CPT) accordingly. It was observed that the result obtained herein varied more with those of CPT and RPT by 25.39% and 21.09% for all span-to-thickness ratios respectively. Meanwhile, the recorded percentage differences are as close as 7.17% for all span-to-thickness ratios, when compared with three dimensional plate analysis. This showed that exact 3D plate theory is more reliable than the shear deformation theory which are quite coarse for thick plate analysis. Doi: 10.28991/esj-2021-01320 Full Text: PDF


Sign in / Sign up

Export Citation Format

Share Document