Fault controls on spatial variation of fracture density and rock mass strength within the Yarlung Tsangpo Fault damage zone (southeastern Tibet)

2021 ◽  
pp. 106238
Author(s):  
Xueliang Wang ◽  
Giovanni Battista Crosta ◽  
John J. Clague ◽  
Douglas Stead ◽  
Juanjuan Sun ◽  
...  
2001 ◽  
Vol 34 (4) ◽  
pp. 1643
Author(s):  
A. Kostakioti ◽  
P. Xypolias ◽  
S. Kokkalas ◽  
T. Doutsos

In this study, we present structural, fracture orientation and fracture density (FD) data in order toquantify the deformation pattern of a damage zone that form around the slip plane of a large scalethrust fault which is located on the Ionian zone (External Hellenides) in northwestern Greece. Structuralanalysis showed at least two major deformation stages as indicated by the presence of refolding,backthrusting and break-back faulting. The fracture orientation analysis revealed three mainfracture systems, a dominant conjugate fracture system which is perpendicular to the transport direction(NW-to NNW trending sets), a conjugate fracture system trending parallel to the transport direction(ENE-trending conjugate sets) and a third diagonal conjugate fracture system (WNW andNNE trending sets). Resulting fracture density-distance diagrams display a decrease of total fracturedensity away from the studied fault, which is largely heterogeneous and irregular on both footwalland hanging wall. The conjugate fracture system trending perpendicular to the transport directionhas the dominant contribution to the accumulation of total fracture density. Based on theseresults we suggest that the observed heterogeneous and irregular distribution of fracture densityfashioned during the second deformation stage and is attributed to the formation of backthrusts andbreak-back thrust faults.


2018 ◽  
Author(s):  
Brooke M. Hornney ◽  
◽  
Marlene C. Villeneuve ◽  
Jonathan Davidson
Keyword(s):  

1996 ◽  
Vol II (3) ◽  
pp. 325-338 ◽  
Author(s):  
K. M. SCHMIDT ◽  
D. R. MONTGOMERY

2012 ◽  
Vol 35 ◽  
pp. 64-77 ◽  
Author(s):  
Hideo Takagi ◽  
Kazuhiro Takahashi ◽  
Koji Shimada ◽  
Kosuke Tsutsui ◽  
Reiko Miura ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Qian-Cheng Sun ◽  
Hao-Sen Guo ◽  
Zhi-Hua Xu ◽  
Yue Liu ◽  
Xiao Xu

It is very important to accurately determine the depth of excavation damaged zone for underground engineering excavation and surrounding rock stability evaluation, and it can be measured by acoustic test, but there is no quantitative method for analysis of the results, and it relies heavily on the experience of engineers, which leads to the low reliability of the results and also limits the application of the acoustic method. According to substantial field test data and the feedback of surrounding rock support parameters, the boundary method is proposed to determine the depth of excavation damaged zone in surrounding rock based on the relation between the ultrasonic velocity of measured point and the background wave velocity of rock mass. When the method is applied to the columnar jointed rock mass of Baihetan and the deep-buried hard rock of Jinping, the excavation damaged zone was well judged. The results in the Baihetan project show that the proposed method of determining excavation damage zone by the acoustic test can well demonstrate the anisotropy characteristics of the columnar jointed rock mass, and the damage evolution characteristics of jointed rock mass at the same position can also be obtained accurately. Moreover, the method also can accurately reveal the damage evolution process of the deep-buried hard rock under the condition of high ground stress, which proved the applicability of this method in jointed or nonjointed rock masses.


2011 ◽  
Vol 120 (3) ◽  
pp. 170-179 ◽  
Author(s):  
P K Kaiser ◽  
B Kim ◽  
R P Bewick ◽  
B Valley

Sign in / Sign up

Export Citation Format

Share Document