southeastern tibet
Recently Published Documents


TOTAL DOCUMENTS

132
(FIVE YEARS 49)

H-INDEX

22
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Yun Zhou ◽  
Li-Sheng Xu ◽  
Zhengyang Pan ◽  
Ming Hao ◽  
Chun-Lai Li

Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3620
Author(s):  
Maoshan Li ◽  
Lingzhi Wang ◽  
Na Chang ◽  
Ming Gong ◽  
Yaoming Ma ◽  
...  

Changes in the surface fluxes cause changes in the annular flow field over a region, and they affect the transport of water vapor. To study the influence of the changes in the surface flux on the water vapor transport in the upper layer in the canyon area of southeastern Tibet, in this study, the water vapor transport characteristics were analyzed using the HYSPLIT_v4 backward trajectory model at Danka and Motuo stations in the canyons in the southeastern Tibetan Plateau from November 2018 to October 2019. Then, using ERA-5 reanalysis data from 1989 to 2019 and the characteristics of the high-altitude water vapor transportation, the impact of the surface flux changes on the water vapor transportation was analyzed using singular value decomposition (SVD). The results show that the main sources of the water vapor in the study area were from the west and southwest during the non-Asian monsoon (non-AMS), while there was mainly southwest air flow and a small amount of southeast air flow in the lower layer during the Asian monsoon (AMS) at the stations in southeastern Tibet. The water vapor transmission channel of the westward airflow is higher than 3000 m, and the water vapor transmission channel of the southwestward and southeastward airflow is about 2000 m. The sensible heat and latent heat are negatively correlated with water vapor flux divergence. The southwest boundary of southeastern Tibet is a key area affecting water vapor flux divergence. When the sensible heat and latent heat exhibit downward trends during the non-Asian monsoon season, the eastward water vapor flux exhibits an upward trend. During the Asian monsoon season, when the sensible heat and latent heat in southeastern Tibet increase as a whole, the eastward water vapor flux in the total-column of southeastern Tibet increases.


2021 ◽  
Author(s):  
Chuanxi Zhao ◽  
Wei Yang ◽  
Matthew Westoby ◽  
Baosheng An ◽  
Guangjian Wu ◽  
...  

Abstract. On 22 March 2021, a ~50 M m3  ice-rock avalanche occurred from 6500 m asl in the Sedongpu basin, southeastern Tibet. The avalanche transformed into a highly mobile flow which temporarily blocked the Yarlung Tsangpo river. The avalanche flow lasted ~5 minutes and produced substantial geomorphological reworking. This event, and previous ones from the basin, occurred concurrently with, or shortly after recorded positive air temperature anomalies. The occurrence of future large mass flows from the basin cannot be ruled out, and their impacts must be carefully considered given implications for sustainable hydropower and associated socioeconomic development in the region.


2021 ◽  
Author(s):  
Jikun Feng ◽  
Huajian Yao ◽  
Ling Chen ◽  
Weitao Wang

Abstract Significant left-lateral movement along the Ailao Shan-Red River fault accommodated a substantial amount of the late Eocene to early Miocene India-Asia convergence. However, the activation of this critical strike-slip fault remains poorly understood. Here, we show key seismic evidence for the occurrence of massive lithospheric delamination in southeastern Tibet. Our novel observation of reflected body waves (e.g. P410P and P660P) retrieved from ambient noise interferometry sheds new light on the massive foundered lithosphere currently near the bottom of the mantle transition zone beneath southeastern Tibet. By integrating the novel seismic and pre-existing geochemical observations, we highlight a linkage between massive lithospheric delamination shortly after the onset of hard collision and activation of continental extrusion along the Ailao Shan-Red River fault. This information provides critical insights into the early-stage evolution of the India-Asia collision in southeastern Tibet, which has significant implications for continental collision and its intracontinental response.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xiaoming Shen ◽  
Yuntao Tian ◽  
Ying Wang ◽  
Lin Wu ◽  
Yingying Jia ◽  
...  

The roles of tectonics and climate in the global increased erosion rates during the Quaternary have been the subject of active debate. The Three Rivers Region, strongly influenced by continental convergence between India and Eurasia and change in Asian monsoon climate, is an ideal place to study the interactions between tectonics and surface processes. Here we report new apatite (U-Th)/He data from an elevation transect that reveal a phase of rapid exhumation since ∼2.6 Ma in the Dulong batholith in the central Three Rivers Region, southeastern Tibetan Plateau. Based on stream profile analysis and compiled thermochronological data in the region, we demonstrate that the tectonic uplift caused by the high-strain at the corner of Indian-Eurasia convergence is responsible for the enhanced exhumation in the central Three Rivers Region in the Quaternary. Our new results highlight that the continuous plate convergence towards the plateau interior has dominated the uplift and deformation in the southeastern Tibet in the Quaternary.


Zootaxa ◽  
2021 ◽  
Vol 5016 (4) ◽  
pp. 543-558
Author(s):  
TING SHEN ◽  
JINJUN CAO ◽  
WEIHAI LI ◽  
HAKAN BOZDOĞAN

A complementary re-description of Kyphopteryx dorsalis Kimmins, 1947 is presented on the basis of a fresh male and additional females from southeastern Tibet, southwestern China. The hitherto unknown inner structures of the female terminalia are described, as well as further details of the male genitalia. In this study, we also present the first records of Capnia s.l. yunnana Li & Yang, 2011 from Tibet and a formal description of an unassociated Capnia s.l. female collected together with the above species. An updated checklist of the named species of Capniidae and Taeniopterygidae from China is also given.  


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Wen-Yun Chen ◽  
Tao Yang ◽  
Jun Yang ◽  
Zhu-Chuan Qiu ◽  
Xiao-Yong Ding ◽  
...  

Abstract Background Douyu Village, inhabited by the Lhoba people, is situated within the Eastern Himalayas, in southeastern Tibet, China. The village is located among high mountains and valleys, which feature complex terrain with cold and dry climates and distinctive vegetation types and species. The Lhoba people in this village are isolated from other groups in China. The Lhoba people have lived in this village since the 15th century and mainly depended on gathering, hunting, and swidden agriculture before the 1960s. Because they have a long history and live under extreme climatic, geographical, and ecological conditions, the Lhoba people in Douyu Village may have unique traditional knowledge about wild plants. Thus, this research aims to record the traditional botanical knowledge of the Lhoba people in Douyu. Methods An ethnobotanical study was conducted on the Lhoba people in Douyu Village in Longzi County, Tibet, China. Semi-structured interviews and group discussions with informed consent were used in the study. We interviewed 41 informants (14 key informants) between 18 and 75 years of age. All information was collected, organized, and compiled into “use reports” for quantitative analysis. The informant consensus factor (ICF) was used to determine the homogeneity of the informants’ knowledge of medicinal plants, while the cultural importance index (CI) was used to estimate the cultural importance of shared species. Results A total of 91 wild species (90 vascular plants and 1 fungus) belonging to 71 genera and 39 families utilized by the Lhoba people in Douyu were documented. Of these species, Pimpinella xizangense and Wikstroemia lungtzeensis are endemic to Longzi County, while Sinopodophyllum hexandrum and Paeonia ludlowii are endangered species in China. All habitats, from the field vegetation at the valley bottoms to the alpine shrubland and meadows, were used for plant collection, and the numbers of species of plants collected from the various vegetation types (except for fields) decreased with increasing altitude. Our study found that 55 species are edible plants and fungi, 29 species are medicinal plants, and 38 species are used for other purposes. Medicinal plants are used for 11 categories of diseases, among which diseases of blood-forming organs (ICF = 0.96) and gastrointestinal diseases (ICF = 0.95) exhibited the highest ICF values. Based on the CI values, the most important plants in this study area are Berberis xanthophloea, B. kongboensis, Sinopodophyllum hexandrum, Vicatia thibetica, and Hippophae rhamnoides subsp. gyantsensis. Moreover, a comparison of the wild plants used by Lhoba ethnic groups in three counties in China showed significant differences among these regions. Conclusions Our study demonstrates that the wild plants utilized by the Lhoba people in Douyu Village are highly diverse, at 90 plant and one fungal species, which reflects not only the number of species but also their diversified functions. The extreme climatic, geographical, and ecological conditions of Douyu within the high mountains and valleys of the Eastern Himalayas potentially affect the Lhoba people’s culture, including plant utilization practices, and contribute to the rich diversity of the wild plants used by the local people.


Sign in / Sign up

Export Citation Format

Share Document