Estimating optimum parameters of tuned mass dampers using harmony search

2011 ◽  
Vol 33 (9) ◽  
pp. 2716-2723 ◽  
Author(s):  
Gebrail Bekdaş ◽  
Sinan Melih Nigdeli
2013 ◽  
Vol 54 ◽  
pp. 262-264 ◽  
Author(s):  
Leandro Fleck Fadel Miguel ◽  
Rafael Holdorf Lopez ◽  
Letícia Fleck Fadel Miguel

Author(s):  
Mohammad Aghajani Delavar

In this paper, optimum parameters of Tuned Mass Dampers (TMD) are considered to control the responses of 10-story shear building under harmonic loading and 22 set of seismic records of FEMA-P695. The criterion used to obtain the optimum parameters is to select mass ratio, the frequency (tuning) and damping ratio that would result in smallest lateral displacements. State-space equations of motion are presented to compute the structural responses by developing a MATLAB file. A 10-story shear building is presented as a case study to assess the effects of TMDs on the multi-story structures. The results indicate that using TMD can reduce structural responses up to the average 20% under earthquake excitation and up to 90% under harmonic loadings. TMDs are not always effective under any type of ground motion; therefore, being aware of the given location is significant to design TMDs properly.


Author(s):  
Young-Moon Kim ◽  
Ki-Pyo You ◽  
Jang-Youl You ◽  
Sun-Young Paek ◽  
Byung-Hee Nam ◽  
...  

Multiple tuned mass dampers (MTMD) is used for suppressing seismic excitation of tall building. The performance of MTMD is compared with that of a single tuned mass system (TMD). Optimum parameters of TMD/MTMD for minimizing the variance response of the damped primary structure derived by Krenk, Igusa, and Jangid were used. The optimally designed MTMD system is more effective than that of a single TMD system for reducing seismic excitation of a tall building.


2006 ◽  
Vol 06 (04) ◽  
pp. 541-557 ◽  
Author(s):  
CHUNXIANG LI

The dual-layer multiple tuned mass dampers (DL-MTMD) with a uniform distribution of natural frequencies are proposed, which consist of one large tuned mass damper (L-TMD) and an arbitrary number of small tuned mass dampers (S-TMD). The structure is represented by a generalized system corresponding to the specific vibration mode to be controlled. The criterion for assessing the optimum parameters and effectiveness of the DL-MTMD is based on the minimization of the minimum values of the maximum dynamic magnification factors (DMF) of the structure installed with the DL-MTMD. Also considered is the stroke of the DL-MTMD. The proposed DL-MTMD system is demonstrated to show higher effectiveness and robustness to the change in frequency tuning, in comparison to the multiple tuned mass dampers (MTMD) with equal total mass ratios. It is also demonstrated to be more effective than the dual tuned mass dampers (DTMD) with one large and one small tuned mass damper, but they maintain the same level of robustness to the change in frequency tuning. The DL-MTMD system can be easily manufactured as the optimum value for the linking dashpots between the structure and L-TMD is shown to be zero.


2020 ◽  
Vol 10 (8) ◽  
pp. 2976 ◽  
Author(s):  
Aylin Ece Kayabekir ◽  
Gebrail Bekdaş ◽  
Sinan Melih Nigdeli ◽  
Zong Woo Geem

In this study, the music-inspired Harmony Search (HS) algorithm is modified for the optimization of active tuned mass dampers (ATMDs). The modification of HS includes the consideration of the best solution with a defined probability and updating of algorithm parameters such as harmony memory, considering rate and pitch adjusting rate. The design variables include all the mechanical properties of ATMD, such as the mass, stiffness and damping coefficient, and the active controller parameters of the proposed proportional–integral–derivative (PID) type controllers. In the optimization process, the analysis of an ATMD implemented structure is done using the generated Matlab Simulink block diagram. The PID controllers were optimized for velocity feedback control, and the objective of the optimization is the minimization of the top story displacement by using the limitation of the stroke capacity of ATMD. The optimum results are presented for different cases of the stroke capacity limit of ATMD. According to the results, the method is effective in reducing the maximum displacement of the structure by 53.71%, while a passive TMD can only reduce it by 31.22%.


Sign in / Sign up

Export Citation Format

Share Document