earthquake excitation
Recently Published Documents


TOTAL DOCUMENTS

445
(FIVE YEARS 102)

H-INDEX

28
(FIVE YEARS 5)

2022 ◽  
Vol 254 ◽  
pp. 113642
Author(s):  
Giovanni De Francesco ◽  
Timothy J. Sullivan

2022 ◽  
Author(s):  
Xiaofeng Zhang ◽  
Harry Far

Abstract As the population grows and land prices rise, high-rise buildings are becoming more and more common and popular in urban cities. Traditional high-rise building design method generally assumes the structure is fixed at the base, because the influence of soil-structure interaction is considered to be beneficial to the response of structures under the earthquake excitation. However, recent earthquakes and studies indicated that SSI may exert detrimental effects on commonly used structural systems. In this study, a numerical soil-structure model is established in Abaqus software to explore the impacts of SSI on high-rise frame-core tube structures. The seismic response of frame-core tube structures with various structural heights, height-width ratios, foundation types and soil types is studied. The numerical simulation results including maximum lateral deflections, foundation rocking, inter-storey drifts and base shears of rigid and flexible base buildings are discussed and compared. The results reveal the lateral displacement and inter-storey drifts of the superstructure can be amplified when SSI is taking into account, while the base shears are not necessarily reduced. Increasing the stiffness of the foundation and the subsoil can generally increase the seismic demand of structures. It has been concluded that it is neither safe nor economical to consider only the beneficial effects of SSI or to ignore them in structural design practice.


2022 ◽  
Vol 2022 ◽  
pp. 1-16
Author(s):  
Yu Liang ◽  
Honggang Wu ◽  
Tianwen Lai ◽  
Hao Lei ◽  
Mingzhe Zhu ◽  
...  

In order to further understand the instability mechanism and geohazard causation when the main sliding path of the slope body is parallel to the path of the bridge, the corresponding bridge-landslide parallel system is constructed for shaking table tests. This paper summarizes the combination forms of bridge-landslide model under different position and focused on the slope body located above the bridge deck. Firstly, based on the shaking table test results of El Centro (1940), the failure behavior of bridge-landslide parallel system was evaluated, and the changes of acceleration and deformation of bridge pile were subsequently analyzed. Then, the interaction bridge structure and sliding body were explained by the spectral features. The main conclusions are as follows. First, in the model test, the landslide belongs to the thrust-type landslide. Due to the barrier function of the bridge, the main failure site of landslide occurs in the middle and trailing edge of slope body. At the same time, the acceleration value of earthquake waves is 0.3 g, which is the key to this variation. Second, the acceleration response of the measuring points on the bridge pile and landslide increases with the increase of ground elevation. If the slope structure is damaged severely, the deformation response of weak interlayer is inconsistent with the surrounding soil structure. Third, with the increase of excitation power, the dominant frequency of bridge-landslide parallel system gradually transitions from low to high frequency rate, and the interaction of the parallel system weakens the influence of river direction on frequency. Finally, under the same working condition, the dynamic response of the measuring points has obvious regularity with the change of situation. But the response of the same points is not regular due to the different earthquake excitation intensity.


2022 ◽  
Author(s):  
Feng Xiong ◽  
Wen Chen ◽  
Qi Ge ◽  
Jiang Chen ◽  
Yang Lu

Abstract A novel low-rise bolt - assembled precast concrete sandwich wall panel structure for rural residential houses was proposed, in which the connections between wall and wall, and wall and floor were connected by high strength bolts and steel plates. The bolt joints can be easily installed and disassembled. They are replaceable to make the precast structure demountable and reassembled. All the components are connected together by the novel bolted connectors. This paper presents the shake-table tests of a full-scale two-story bolt-assembled precast concrete sandwich wall building. The results indicated that the proposed structural system had good seismic performance and remained in the elastic stage with no damage after 9-degree rare earthquake excitation for the Model-1. The Model-2 exhibited excellent capacity and performed satisfactorily under the excitation up to 0.8 g. Cracks were observed at the wall openings and the base of walls and columns, which was similar to that of a cast-in-situ structure. The damage statuses were mainly light damage and moderate damage. The bolt connection joints were not anti-seismic weak places and had good seismic performance. Equivalent base shear method is suitable for estimating the seismic demand of the proposed precast concrete sandwich wall panel structure.


2022 ◽  
Author(s):  
Novikova O.V ◽  
Gorshkov A.I.

Abstract This study is an attempt to determine potential tsunamigenic morphostructural nodes in mainland Greece using pattern recognition algorithms. The earthquakes that have produced local tsunamis in the region were confined to morphostructural nodes whose locations were found by morphostructural zoning. The recognition problem consisted in separating all nodes in the region into the tsunamigenic class and the non-tsunamigenic class based mainly on the geomorphologic parameters of the nodes. The data on tsunamigenic earthquakes in Greece for training the Cora-3 algorithm were taken from the GHTD global historical catalog of tsunamigenic events (http://www.ngdc.noaa.gov/hazard/tsu_db.shtml). The recognition procedure resulted in determining 27 tsunamigenic nodes, with most of these being situated in the southern tip of the Peloponnese Peninsula, as well as in the gulfs of Corinth and Patras. Three tsunamigenic nodes were identified in the area of the Malian Gulf on the Aegean coast of Greece. According to the relevant literature, most local tsunamis in Greece were initiated by submarine slides and slumps due to earthquakes. According to the characteristic geomorphologic features derived in this study, the tsunamigenic nodes are situated in settings of contrasting relief characterized by steep slopes. This favors submarine landslides when subjected to earthquake excitation. The results reported in this paper form a basis for developing a methodology to be used in long-term tsunami hazard assessment, supplying information on local potential tsunamigenic sources required for tsunami regionalization of coastal areas in Greece.


2022 ◽  
Author(s):  
Nicola Longarini ◽  
Pietro Giuseppe Crespi ◽  
Marco Zucca

Abstract Recent Italian earthquakes have shown the seismic vulnerability of many typical historical masonry churches characterized by one nave and wooden roofs. Under transverse earthquake the nave transverse response of this kind of churches can be influenced by the geometrical and material features. To increase the seismic performance, strengthening interventions aimed to pursue the global box-behavior by the realization of dissipative roof-structure represent a valid strategy especially for avoiding out-of-plane mechanisms. In this way, the roof structure must be able to represent a tool for the damped rocking of the perimeter walls. Cross-laminated timber panels (CLT) have been recently adopted as roof-diaphragm having shown valid ductile behavior in experimental tests, satisfying the conservative restoration criteria at the same time. In this paper, after a description of the numerical approach for the damped rocking mechanism for one nave configuration church, the effectiveness of different CLT based roof-diaphragms in the nave transverse response is investigated for four historical churches. The seismic responses are performed by comparative dynamic nonlinear analyses and the results are shown in terms of displacements and shear actions transferred to the façade. The influence of the geometrical features of the churches on the nave transversal response is deepened by sensitivity analyses with the aim to predict the displacements and shear variations under the same earthquake excitation.


Author(s):  
Xianyang Yang ◽  
James D. Lee

This work developed the optimal and active control algorithms applicable to structural control for earthquake resistance. [Lewis, F. L., Vrabie, D. and Syrmos, V. L. [2012] Optimal Control (John Wiley & Sons)] developed a rigorous and comprehensive procedure for the derivation of an optimal control strategy based on the calculus of variation. This work is an application of Lewis’ formulation to the control of a structure for earthquake resistance. We developed a computer software which can be used to generate a dynamic model to simulate a planar structure and to construct the control law. This model also includes the tendon driven actuators, sensors and true history of earthquake excitation. The control law has two parts: (I) the feedback control which depends on the estimate state variables (Kalman filter) and (II) the record of the realistic earthquake excitation. The optimal control problem eventually leads to a two-point boundary value problem whose solution hinges on the knowledge of the entire history of the earthquake excitation. We employ true records of earthquake excitation as input. This approach enables one to solve the Riccati equations rigorously. Then, from the simulation results, one may study the relations between the control algorithm design and the characteristics (frequency, amplitude and duration) of earthquake excitation.


2021 ◽  
Vol 9 ◽  
Author(s):  
Chengwen Wang ◽  
Xiaoli Liu ◽  
Danqing Song ◽  
Enzhi Wang ◽  
Jianmin Zhang

In order to better understand the dynamic response and failure modes of rock slopes containing weak interlayers subjected to earthquake excitation, a series of numerical simulations were carried out using the continuum-discontinuum element method (CDEM), considering the influence of seismic amplitude and weak interlayers inclination. The seismic response characteristics of slopes were systematically analyzed according to the waveform characteristics, amplification effect, equivalent crack ratio, etc. The numerical results show that the acceleration waveform characteristics and peak ground displacement (PGD) amplification coefficient have good correspondence with the dynamic failure process of landslides. Comprehensive analysis of waveform characteristics and PGD amplification coefficient can determine the damage time, damage location, and damage degree of landslides. The landslide process can be divided into three stages according to the equivalent crack ratio: rapid generation of a large number of microcracks, expansion and aggregation of microcracks, and penetration of micro-cracks and the formation of slip surfaces. The equivalent crack ratio provides a new idea for evaluating slope stability. In addition, under the combination of different amplitudes and weak interlayers, these earthquake-induced landslides exhibit different failure modes: the failure of the gentle-dip slope is mainly local rockfall; The mid-dip and steep-dip slopes with small amplitudes experience “tensile cracking-slip-collapsing” failure; The steep-dip slopes under strong earthquake failed in the form of “tensile cracking-slip-slope extrusion-collapsing”. The research results are of great significance for a deeper understanding of the formation mechanism of rock landslides with weak interlayers and the prevention of such landslide disasters.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Feng Wang ◽  
Jialin Shi ◽  
Pengyan Chen

To address the irrationality of making a structure subjected to bidirectional ground motions equivalent to an SDOF system, a new approach method is presented in this paper. The ratio between modal participation factors of the two components of the structure is expressed as γ, and the superposition of bidirectional ground motions is regarded as one-directional earthquake excitation for the equivalent SDOF system. Based on this, an energy balance equation is established, and a method used to estimate normalized hysteretic energy (NHE) is proposed. Analysis of the ratio between NHE (γ ≠ 0) and NHE (γ = 0) is suggested in order to analyze the influence of bidirectional ground motions on hysteretic energy demand, and then, “α1 = NHE (γ ≠ 0)/NHE (γ = 0)” is defined, and bidirectional ground motion records for different soil sites are selected for establishing superimposed excitations. In addition, the period range of 0–5 s for the energy spectrum is divided into 6 ranges. In each period range, the means of α1 are defined as α. The curves of α of constant ductility factors for different soil sites are established, in which α is the vertical coordinate and γ is the horizontal coordinate. Through nonlinear response history analysis, the influence of soil types at different sites, the ductility factor, the ratio of modal participation factors, and the period on the values of α are analyzed. According to the analytical results, correction coefficient αs (the simplified value of α) is obtained so that the hysteretic energy demand under bidirectional ground motions can be determined.


Sign in / Sign up

Export Citation Format

Share Document