Integrity and progressive collapse resistance of RC structures with ordinary and special moment frames

2015 ◽  
Vol 95 ◽  
pp. 71-79 ◽  
Author(s):  
Menglu Li ◽  
Mehrdad Sasani
2013 ◽  
Vol 405-408 ◽  
pp. 835-840
Author(s):  
Tie Cheng Wang ◽  
Zhi Ping Li ◽  
Hai Long Zhao

In this study, three tie force models of a 10-storey concrete frame structure were prepared to investigate the effects of these methods on the resistance of frame structures against progressive collapse. Four cases of different first-storey column removed were considered using nonlinear static analysis method and their performances were compared with each other. From the nonlinear static analysis, the tie force methods in DoD 2005 and DoD 2009 cannot improve progressive collapse resistance of the structure because horizontal cables don't play a full role. X-type tension cables provide alternative load paths after loss of a single column, and improve progressive collapse resistance of the structure. The X-type tie force model remained in stable condition after sudden removal of a corner column, an exterior column, or an interior column in the first storey.


2018 ◽  
Vol 10 (10) ◽  
pp. 3797
Author(s):  
Sang-Yun Lee ◽  
Sam-Young Noh ◽  
Dongkeun Lee

This study evaluates the progressive collapse resistance performance of steel moment frames, individually designed with different connection details. Welded unreinforced flange-bolted web (WUF-B) and reduced beam section (RBS) connections are selected and applied to ordinary moment frames designed as per the Korean Building Code (KBC) 2016. The 3-D steel frame systems are modeled using reduced models of 1-D and 2-D elements for beams, columns, connections, and composite slabs. Comparisons between the analyzed results of the reduced models and the experimental results are presented to verify the applicability of the models. Nonlinear static analyses of two prototype buildings with different connection details are conducted using the reduced models, and an energy-based approximate analysis is used to account for the dynamic effects associated with sudden column loss. The assessment on the structures was based on structural robustness and sensitivity methods using the alternative path method suggested in General Services Administration (GSA) 2003, in which column removal scenarios were performed and the bearing capacity of the initial structure with an undamaged column was calculated under gravity loads. According to the analytical results, the two prototype buildings satisfied the chord rotation criterion of GSA 2003. These results were expected since the composite slabs designed to withstand more than 3.3 times the required capacity had a significant effect on the stiffness of the entire structure. The RBS connections were found to be 14% less sensitive to progressive collapse compared to the WUF-B ones.


Sign in / Sign up

Export Citation Format

Share Document