Airborne particle accumulation and loss in pollution-tolerant lichens and its magnetic quantification

2021 ◽  
pp. 117807
Author(s):  
Marcos A.E. Chaparro
2021 ◽  
Vol 41 (5) ◽  
pp. 358-359
Author(s):  
Shane M. Hammer ◽  
Joshua R. Smith ◽  
Eric J. Bruhn ◽  
Randal J. Thomas ◽  
Thomas P. Olson

Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 606
Author(s):  
Claudia Meindl ◽  
Kristin Öhlinger ◽  
Verena Zrim ◽  
Thomas Steinkogler ◽  
Eleonore Fröhlich

Respiratory exposure of humans to environmental and therapeutic nanoparticles repeatedly occurs at relatively low concentrations. To identify adverse effects of particle accumulation under realistic conditions, monocultures of Calu-3 and A549 cells and co-cultures of A549 and THP-1 macrophages in the air–liquid interphase culture were exposed repeatedly to 2 µg/cm2 20 nm and 200 nm polystyrene particles with different functionalization. Particle accumulation, transepithelial electrical resistance, dextran (3–70 kDa) uptake and proinflammatory cytokine secretion were determined over 28 days. Calu-3 cells showed constant particle uptake without any change in barrier function and cytokine release. A549 cells preferentially ingested amino- and not-functionalized particles combined with decreased endocytosis. Cytokine release was transiently increased upon exposure to all particles. Carboxyl-functionalized demonstrated higher uptake and higher cytokine release than the other particles in the A549/THP-1 co-cultures. The evaluated respiratory cells and co-cultures ingested different amounts and types of particles and caused small (partly transient) effects. The data suggest that the healthy cells can adapt to low doses of non-cytotoxic particles.


Fluids ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 105
Author(s):  
Ichiro Ueno

Coherent structures by the particles suspended in the half-zone thermocapillary liquid bridges via experimental approaches are introduced. General knowledge on the particle accumulation structures (PAS) is described, and then the spatial–temporal behaviours of the particles forming the PAS are illustrated with the results of the two- and three-dimensional particle tracking. Variations of the coherent structures as functions of the intensity of the thermocapillary effect and the particle size are introduced by focusing on the PAS of the azimuthal wave number m=3. Correlation between the particle behaviour and the ordered flow structures known as the Kolmogorov–Arnold—Moser tori is discussed. Recent works on the PAS of m=1 are briefly introduced.


Sign in / Sign up

Export Citation Format

Share Document