Meteoric Be-10 from Sirius Group suggests high elevation McMurdo Dry Valleys permanently frozen since 6Ma

2012 ◽  
Vol 355-356 ◽  
pp. 13-19 ◽  
Author(s):  
Warren W. Dickinson ◽  
Martin Schiller ◽  
Bob G. Ditchburn ◽  
Ian J. Graham ◽  
Albert Zondervan
2021 ◽  
Author(s):  
◽  
Cassandra Anh Trinh-Le

<p>The hyper-arid, cryotic, wind-dominated conditions in the high-elevation McMurdo Dry Valleys of Antarctica are among Earth’s most extreme environments and represent the closest terrestrial analog to the surface of Mars. These unique conditions result in complex surface processes that occur in the overall absence of liquid water. However, since water is typically believed to be required for these processes to occur, the mechanisms responsible for how these processes can persist in this environment are poorly understood. Previous studies that focused on individual processes of sedimentation in the Dry Valleys leave questions regarding the role of water in dry cryotic sedimentation as well as the rates at which these processes occur. This thesis addresses these questions by combining Optically Stimulated Luminescence (OSL) dating, meteoric Beryllium-10 (10Be) measurements, soil geochemistry analysis, and petrographic microscopy analysis on ice-cemented permafrost cores taken from University Valley, one of the high-elevation Dry Valleys, where the availability and effects of liquid water are minimal. These analyses were used to explore four main sedimentation processes that occur in the Dry Valleys: chemical weathering, fine particle translocation, eolian transport, and physical weathering. Analyzed together, findings from these analyses comprehensively describe the complex processes involved in dry cryotic sedimentation and determine the roles of different phases of water in this environment.   Sediments in University Valley have accumulated at a rate of approximately 2.1 mm/ka for the last 200 ka, as dated by OSL, from erosion of the valley walls and deposition of windblown dust. Sediment accumulation is influenced by topography of the valley floor, depth of the ice table, aspect of the valley walls, wind direction, and mechanical breakdown of rocks due to solar heating. While persistent winds constantly remobilize fine particles and dust in the upper few cm of the dry ground, sediment grains that are sand-sized or larger do not undergo significant remobilization, and sediments in the ice-cemented ground are unaffected by remobilization and translocation processes. Rare clay bridges seen in thin section show that small, infrequent, transient surface wetting events have occurred over the last 200 ka. High anion concentrations associated with high surface meteoric 10Be measurements and clay bridges indicate that the source of these wetting events is the melting of wind-blown snow from coastal regions. Patterns in meteoric Be measurements show that these small transient wetting events are not sufficient to translocate fine particles through the soil profile, which suggests that the role of liquid water as a transporting agent is negligible in this environment. Chemical weathering in University Valley appears to be controlled by two main components: dolerite content of the sediments, and exposure to the atmosphere at the ground surface where condensation of water vapor onto grain surfaces readily leaches ions from dolerite grains under the oxidizing conditions of the Dry Valleys. In the absence of liquid water, chemical processes that occur in this environment rely on water vapor.   Together, these results indicate that surfaces in University Valley are remarkably young and sedimentologically active. Because University Valley represents one of the closest terrestrial analogs to the surface of Mars, findings from this thesis may be applicable to understanding the timescales and the processes that control anhydrous sedimentation on the surface of Mars.</p>


2021 ◽  
Author(s):  
◽  
Cassandra Anh Trinh-Le

<p>The hyper-arid, cryotic, wind-dominated conditions in the high-elevation McMurdo Dry Valleys of Antarctica are among Earth’s most extreme environments and represent the closest terrestrial analog to the surface of Mars. These unique conditions result in complex surface processes that occur in the overall absence of liquid water. However, since water is typically believed to be required for these processes to occur, the mechanisms responsible for how these processes can persist in this environment are poorly understood. Previous studies that focused on individual processes of sedimentation in the Dry Valleys leave questions regarding the role of water in dry cryotic sedimentation as well as the rates at which these processes occur. This thesis addresses these questions by combining Optically Stimulated Luminescence (OSL) dating, meteoric Beryllium-10 (10Be) measurements, soil geochemistry analysis, and petrographic microscopy analysis on ice-cemented permafrost cores taken from University Valley, one of the high-elevation Dry Valleys, where the availability and effects of liquid water are minimal. These analyses were used to explore four main sedimentation processes that occur in the Dry Valleys: chemical weathering, fine particle translocation, eolian transport, and physical weathering. Analyzed together, findings from these analyses comprehensively describe the complex processes involved in dry cryotic sedimentation and determine the roles of different phases of water in this environment.   Sediments in University Valley have accumulated at a rate of approximately 2.1 mm/ka for the last 200 ka, as dated by OSL, from erosion of the valley walls and deposition of windblown dust. Sediment accumulation is influenced by topography of the valley floor, depth of the ice table, aspect of the valley walls, wind direction, and mechanical breakdown of rocks due to solar heating. While persistent winds constantly remobilize fine particles and dust in the upper few cm of the dry ground, sediment grains that are sand-sized or larger do not undergo significant remobilization, and sediments in the ice-cemented ground are unaffected by remobilization and translocation processes. Rare clay bridges seen in thin section show that small, infrequent, transient surface wetting events have occurred over the last 200 ka. High anion concentrations associated with high surface meteoric 10Be measurements and clay bridges indicate that the source of these wetting events is the melting of wind-blown snow from coastal regions. Patterns in meteoric Be measurements show that these small transient wetting events are not sufficient to translocate fine particles through the soil profile, which suggests that the role of liquid water as a transporting agent is negligible in this environment. Chemical weathering in University Valley appears to be controlled by two main components: dolerite content of the sediments, and exposure to the atmosphere at the ground surface where condensation of water vapor onto grain surfaces readily leaches ions from dolerite grains under the oxidizing conditions of the Dry Valleys. In the absence of liquid water, chemical processes that occur in this environment rely on water vapor.   Together, these results indicate that surfaces in University Valley are remarkably young and sedimentologically active. Because University Valley represents one of the closest terrestrial analogs to the surface of Mars, findings from this thesis may be applicable to understanding the timescales and the processes that control anhydrous sedimentation on the surface of Mars.</p>


2013 ◽  
Vol 25 (4) ◽  
pp. 575-582 ◽  
Author(s):  
Margarita M. Marinova ◽  
Christopher P. Mckay ◽  
Wayne H. Pollard ◽  
Jennifer L. Heldmann ◽  
Alfonso F. Davila ◽  
...  

AbstractWe report on 475 measurements of depth to ice-cemented ground in four high-elevation valleys of the Quartermain Mountains, McMurdo Dry Valleys, Antarctica. These valleys have pervasive ice-cemented ground, and the depth to ice-cemented ground and the ice composition may be indicators of climate change. In University Valley, the measured depth to ice-cemented ground ranges from 0–98 cm. There is an overall trend of increasing depth to ice-cemented ground with distance from a small glacier at the head of the valley, with a slope of 32 cm depth per kilometre along the valley floor. For Farnell Valley, the depth to ice-cemented ground is roughly constant (c. 30 cm) in the upper and central parts of the valley, but increases sharply as the valley descends into Beacon Valley. The two valleys north of University Valley also have extensive ice-cemented ground, with depths of 20–40 cm, but exhibit no clear patterns of ice depth with location. For all valleys there is a tendency for the variability in depth to ice-cemented ground at a site to increase with increasing depth to ice. Snow recurrence, solar insolation, and surface albedo may all be factors that cause site to site variations in these valleys.


2016 ◽  
Author(s):  
Devin Castendyk ◽  
◽  
Maciej K. Obryk ◽  
Sasha Z. Leidman ◽  
Michael Gooseff ◽  
...  

2016 ◽  
Author(s):  
Melisa A. Diaz ◽  
◽  
Susan A. Welch ◽  
Kathleen A. Welch ◽  
Alia L. Khan ◽  
...  

2016 ◽  
Author(s):  
Kate M. Swanger ◽  
◽  
Joerg M. Schaefer ◽  
Gisela Winckler

2017 ◽  
Author(s):  
Melisa A. Diaz ◽  
◽  
Byron J. Adams ◽  
Alia L. Khan ◽  
Kathleen A. Welch ◽  
...  

2016 ◽  
Vol 15 (7) ◽  
pp. 743-754 ◽  
Author(s):  
Isaac Garrido-Benavent ◽  
Ulrik Søchting ◽  
Asunción de los Ríos Murillo ◽  
Sergio Pérez-Ortega

2007 ◽  
Vol 55 (3) ◽  
pp. 395-405 ◽  
Author(s):  
U. Stingl ◽  
J.-C. Cho ◽  
W. Foo ◽  
K. L. Vergin ◽  
B. Lanoil ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document