high surface
Recently Published Documents





Carbon ◽  
2022 ◽  
Vol 188 ◽  
pp. 545
Jing Wang ◽  
Shuang Chen ◽  
Jia-yu Xu ◽  
Li-cheng Liu ◽  
Ji-cheng Zhou ◽  

Biosensors ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 43
Melanie Welden ◽  
Arshak Poghossian ◽  
Farnoosh Vahidpour ◽  
Tim Wendlandt ◽  
Michael Keusgen ◽  

Utilizing an appropriate enzyme immobilization strategy is crucial for designing enzyme-based biosensors. Plant virus-like particles represent ideal nanoscaffolds for an extremely dense and precise immobilization of enzymes, due to their regular shape, high surface-to-volume ratio and high density of surface binding sites. In the present work, tobacco mosaic virus (TMV) particles were applied for the co-immobilization of penicillinase and urease onto the gate surface of a field-effect electrolyte-insulator-semiconductor capacitor (EISCAP) with a p-Si-SiO2-Ta2O5 layer structure for the sequential detection of penicillin and urea. The TMV-assisted bi-enzyme EISCAP biosensor exhibited a high urea and penicillin sensitivity of 54 and 85 mV/dec, respectively, in the concentration range of 0.1–3 mM. For comparison, the characteristics of single-enzyme EISCAP biosensors modified with TMV particles immobilized with either penicillinase or urease were also investigated. The surface morphology of the TMV-modified Ta2O5-gate was analyzed by scanning electron microscopy. Additionally, the bi-enzyme EISCAP was applied to mimic an XOR (Exclusive OR) enzyme logic gate.

2022 ◽  
Vol 14 (2) ◽  
pp. 353
Mengying Ruan ◽  
Zhenqi Hu ◽  
Xinyi Duan ◽  
Tao Zhou ◽  
Xinran Nie

Coal gangue is an inevitable product in coal mining and processing and is the most important source of pollution in mines. Vegetation restoration of coal gangue piles must consider its special site conditions. Therefore, we conducted unmanned air vehicle (UAV) temperature monitoring, field investigation and experimental analysis on spontaneous combustion coal gangue piles in Lu’an mining area. In the vegetation construction of coal gangue piles, high-temperature stress affects plant survival. The spontaneous combustion coal gangue piles have abnormal temperature, high surface temperature and few vegetation types. The plant community species diversity index (Shannon–Wiener index, Pielou’s index and Species abundance index) is small, the plant community is single and the plant diversity is low. Spontaneous combustion of coal gangue leads to soil acidification, reducing soil water content, soil organic carbon (SOM), available nitrogen (AN), available potassium (AK) and available phosphorus (AP). These factors are single or interactive in plants and have an impact on plant survival and growth. The research results are of great significance to the vegetation restoration of spontaneous combustion coal gangue piles, ecological reconstruction and the improvement of the ecological environment of coal mine areas.

Membranes ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 84
Juan Wang

Amphotericin B (AmB) is an antifungal drug that rarely develops resistance. It has an affinity with the cholesterol on mammalian cell membranes, disrupting the structure and function of the membranes, which are also affected by potassium ions. However, the mechanism is unclear. In this paper, the Langmuir monolayer method was used to study the effects of potassium ions on the surface pressure–mean molecular area of isotherms, elastic modulus and the surface pressure–time curves of a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/cholesterol (DPPC/Chol) monolayer and a DPPC/Chol/AmB monolayer. The morphology and thickness of the Langmuir–Blodgett films were studied via atomic force microscopy. The results showed that AmB can increase the mean molecular area of the DPPC/Chol mixed monolayer at low pressures (15 mN/m) but reduces it at high pressures (30 mN/m). The potassium ions may interfere with the effect of AmB in different ways. The potassium ions can enhance the influence of AmB on the stability of monolayer at low surface pressures, but weaken it at high surface pressures. The potassium ions showed significant interference with the interaction between AmB and the cholesterol-enriched region. The results are helpful for us to understand how the effect of amphotericin B on the phospholipid membrane is interfered with by potassium ions when amphotericin B enters mammalian cell membrane.

2022 ◽  
Vol 12 (1) ◽  
James C. Gallagher ◽  
Mona A. Ebrish ◽  
Matthew A. Porter ◽  
Alan G. Jacobs ◽  
Brendan P. Gunning ◽  

AbstractTo improve the manufacturing of vertical GaN devices for power electronics applications, the effects of defects in GaN substrates need to be better understood. Many non-destructive techniques including photoluminescence, Raman spectroscopy and optical profilometry, can be used to detect defects in the substrate and epitaxial layers. Raman spectroscopy was used to identify points of high crystal stress and non-uniform conductivity in a substrate, while optical profilometry was used to identify bumps and pits in a substrate which could cause catastrophic device failures. The effect of the defects was studied using vertical P-i-N diodes with a single zone junction termination extention (JTE) edge termination and isolation, which were formed via nitrogen implantation. Diodes were fabricated on and off of sample abnormalities to study their effects. From electrical measurements, it was discovered that the devices could consistently block voltages over 1000 V (near the theoretical value of the epitaxial layer design), and the forward bias behavior could consistently produce on-resistance below 2 mΩ cm2, which is an excellent value considering DC biasing was used and no substrate thinning was performed. It was found that high crystal stress increased the probability of device failure from 6 to 20%, while an inhomogeneous carrier concentration had little effect on reverse bias behavior, and slightly (~ 3%) increased the on-resistance (Ron). Optical profilometry was able to detect regions of high surface roughness, bumps, and pits; in which, the majority of the defects detected were benign. However a large bump in the termination region of the JTE or a deep pit can induce a low voltage catastrophic failure, and increased crystal stress detected by the Raman correlated to the optical profilometry with associated surface topography.

Farzad Allahnouri ◽  
Khalil Farhadi ◽  
Hamideh Imanzadeh ◽  
Rahim Molaei ◽  
Habibollah Eskandari

Abstract In the present study, a bimetallic nanostructure of gold-copper (Au-CuNPs) was decorated on the surface of porous silicon (PSi) using an easy galvanic replacement reaction between metal ions and PSi in the presence of 0.1 M hydrofluoric acid solution. The morphology and structures of the Au-CuNPs@PSi nanocomposite were characterized using X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) energy-dispersive X-ray spectroscopy (EDX) and cyclic voltammetry (CV) techniques. Then, prepared nanocomposite was used as a modifier in screen-printed carbon electrode (SPCE) for the highly sensitive simultaneous determination of codeine (COD) and acetaminophen (ACE). The combination of PSi and metals nanoparticles provide a porous and high surface area with excellent electrical conductivity which leads to reduce the peak potentials and enhance the oxidation peak currents of COD and ACE at the surface of the Au-CuNPs@PSi/SPCE nanosensor. The dynamic linear ranges were obtained from 0.06 to 0.6 µM for both COD and ACE and the detection limits (3.0 S/N) estimated 0.35 µM for COD and 0.30 µM for ACE, respectively. Moreover, recovery tests were carried out in real samples such as urine, human blood plasma, and tablets.

Sign in / Sign up

Export Citation Format

Share Document