Dual-plane stereoscopic PIV measurement of vortical structure in turbulent channel flow on sinusoidal riblet surface

2019 ◽  
Vol 74 ◽  
pp. 99-110 ◽  
Author(s):  
H. Mamori ◽  
K. Yamaguchi ◽  
M. Sasamori ◽  
K. Iwamoto ◽  
A. Murata
2000 ◽  
Vol 2000.6 (0) ◽  
pp. 185-186
Author(s):  
Nobuhiko ITHO ◽  
Junichi IZUMINO ◽  
Koichi NISHINO ◽  
Kahoru TORII

2017 ◽  
Vol 832 ◽  
pp. 483-513 ◽  
Author(s):  
Matteo de Giovanetti ◽  
Hyung Jin Sung ◽  
Yongyun Hwang

It has often been proposed that the formation of large-scale motion (or bulges) is a consequence of successive mergers and/or growth of near-wall hairpin vortices. In the present study, we report our direct observation that large-scale motion is generated by an instability of an ‘amplified’ streaky motion in the outer region (i.e. very-large-scale motion). We design a numerical experiment in turbulent channel flow up to $Re_{\unicode[STIX]{x1D70F}}\simeq 2000$ where a streamwise-uniform streaky motion is artificially driven by body forcing in the outer region computed from the previous linear theory (Hwang & Cossu, J. Fluid Mech., vol. 664, 2015, pp. 51–73). As the forcing amplitude is increased, it is found that an energetic streamwise vortical structure emerges at a streamwise wavelength of $\unicode[STIX]{x1D706}_{x}/h\simeq 1{-}5$ ($h$ is the half-height of the channel). The application of dynamic mode decomposition and the examination of turbulence statistics reveal that this structure is a consequence of the sinuous-mode instability of the streak, a subprocess of the self-sustaining mechanism of the large-scale outer structures. It is also found that the statistical features of the vortical structure are remarkably similar to those of the large-scale motion in the outer region. Finally, it is proposed that the largest streamwise length of the streak instability determines the streamwise length scale of very-large-scale motion.


Author(s):  
Ling Zhen ◽  
Yassin A. Hassan

In this study, continuous wavelet transforms and spatial correlation techniques are employed to determine the space-localized wavenumber energy spectrum of the velocity signals in turbulent channel flow. The flow conditions correspond to single phase flow and microbubbles injected two phase flow. The wavelet energy spectrums demonstrate that the wavenumber (eddy size) content of the velocity signals is not only space-dependent but also microbubbles can impact the eddy size content. Visual observations of the wavelet energy spectrum spatial distribution was realized by using Particle Image Velocimetry (PIV) measurement technique. The two phase flow condition corresponds to a drag reduction of 38.4% with void fraction of 4.9%. The present results provide evidence that microbubbles in the boundary layer of a turbulent channel flow can help adjust the eddy size distributions near the wall. This can assist in explaining that microbubbles are performing as buffers to keep the energy of fluid particles going in streamwise direction and reducing the energy of fluid particles going in normal direction.


1988 ◽  
pp. 131-140 ◽  
Author(s):  
Takanori SAGA ◽  
Hirofumi OHNARI ◽  
Katsutoshi WATANABE ◽  
Takashi SAITOU

Sign in / Sign up

Export Citation Format

Share Document