riblet surface
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 12)

H-INDEX

9
(FIVE YEARS 1)

Micromachines ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 59
Author(s):  
Mingrui Ao ◽  
Miaocao Wang ◽  
Fulong Zhu

With the k-ε renormalization group turbulence model, the drag reduction mechanism of three- dimensional spherical crown microstructure of different protruding heights distributing on the groove surface was studied in this paper. These spherical crown microstructures were divided into two categories according to the positive and negative of protruding height. The positive spherical crown micro-structures can destroy a large number of vortexes on the groove surface, which increases relative friction between water flow and the groove surface. With decreasing the vertical height of the spherical crown microstructure, the number of rupture vortexes gradually decreases. Due to the still water area causes by the blocking effect of the spherical crown microstructure, it was found that the shear stress on the groove surface can be reduced, which can form the entire drag reduction state. In another case, the spherical crown microstructures protrude in the negative direction, vortexes can be generated inside the spherical crown, it was found that these vortexes can effectively reduce the resistance in terms of pressure and friction. In a small volume, it was shown that the surface drag reduction rate of spherical crown microstructures protrudes in negative directions can be the same as high as 24.8%.


2021 ◽  
Vol 120 ◽  
pp. 110246
Author(s):  
G.M. Ozkan ◽  
G.E. Elsinga ◽  
W.-P. Breugem ◽  
D. Stübing ◽  
K.J. Reynolds ◽  
...  

2020 ◽  
Vol 16 (10) ◽  
pp. 1530-1541
Author(s):  
Yuanzhe Li ◽  
Yissue Woo ◽  
Manoj Sekar ◽  
Srikanth Narasimalu ◽  
ZhiLi Dong

Marine structures often suffer from biofouling, which may lead to macrofouling by marine animals like marine worms and barnacles, weighing down the structures and increasing the drag. This paper analyses the effect of the newly fabricated biological anti-adhesion Titania-Polyurea spray coating, which can effectively reduce biofouling from enriching on the surface. Through the surface characterization, bioassays and micro-channel drag-reduction test, the antibacterial effect caused by the nano-titanium dioxide is systematically studied. Compared to the different weight percentages of nano-TiO2 in the coating system, the photocatalytic activity, riblet surface structure and hydrophobic wettability are supposed to be the key factors to reduce the flow resistance at a drag reduction rate of 3.0% and further enhance the anti-biofouling performance under dark conditions.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Haichao Zhou ◽  
Zhen Jiang ◽  
Jian Yang ◽  
Huihui Zhai ◽  
Guolin Wang

Unlike conventional pneumatic tires, the nonpneumatic tires (NPT) are explosion proof and simple to maintain and provide low rolling resistance. At high vehicle speeds, however, the complex airflow produced by the open flexible-spoke structure of NPT yields high aerodynamic noise, which contributes to sound pollution in the vehicular traffic environment. Inspired by the idea that a nonsmooth riblet structure can affect fluid flow and offer noise reduction, the analyses of the effect of the nonsmooth riblet surface on the aerodynamic noise of an NPT and noise reduction mechanism were presented in this paper. First, computational fluid dynamics (CFD) was used to analyze the surface pressure coefficient characteristics of a smooth flexible-spoke tire rolling at a speed of 80 km/h and subsequently validating the numerical simulation results by comparing them with published test results. Secondly, large eddy simulation (LES) and the Ffowcs Williams–Hawkings (FW-H) method were, respectively, used to determine the transient flow and far-field aerodynamic noise. Then, the mechanism of noise reduction was investigated using a vortex theory. Based on the vortex theory, the positions and strengths of noise sources were determined using the Lamb vector. Finally, according to the fluid boundary layer theory, a nonsmooth riblet surface was arranged on the surface of the spokes, and the influences of the riblet structure parameters, including size, position, and direction, on aerodynamic noise were analyzed. Based on the vortex theory, it was found that the nonsmooth riblet structure can reduce the Lamb vector, suppress the generation of flow vortices, decrease acoustic source strength, and effectively decrease noise up to 5.18 dB using the optimized riblet structure. The study results provide a theoretical basis for the structural design of a new low-noise NPT.


2019 ◽  
Vol 9 (23) ◽  
pp. 5199
Author(s):  
Hidemi Takahashi ◽  
Hidetoshi Iijima ◽  
Mitsuru Kurita ◽  
Seigo Koga

A unique approach to evaluate the reduction of skin friction drag by riblets was applied to boundary layer profiles measured in wind tunnel experiments. The proposed approach emphasized the turbulent scales based on hot-wire anemometry data obtained at a sampling frequency of 20 kHz in the turbulent boundary layer to evaluate the skin friction drag reduction. Three-dimensional riblet surfaces were fabricated using aviation paint and were applied to a flat-plate model surface. The turbulent statistics, such as the turbulent scales and intensities, in the boundary layer were identified based on the freestream velocity data obtained from the hot-wire anemometry. Those turbulent statistics obtained for the riblet surface were compared to those obtained for a smooth flat plate without riblets. Results indicated that the riblet surface increased the integral scales and decreased the turbulence intensity, which indicated that the turbulent structure became favorable for reducing skin friction drag. The proposed method showed that the current three-dimensional riblet surface reduced skin friction drag by about 2.8% at a chord length of 67% downstream of the model’s leading edge and at a freestream velocity of 41.7 m/s (Mach 0.12). This result is consistent with that obtained by the momentum integration method based on the pitot-rake measurement, which provided a reference dataset of the boundary layer profile.


Author(s):  
Zi-Liang Zhang ◽  
Ming-Ming Zhang ◽  
Chang Cai ◽  
Yu Cheng

Riblet is one of the most promising passive drag reduction techniques in turbulent flows. In this paper, hot-wire measurements on a turbulent boundary layer perturbed by a drag-reducing riblet surface are carried out to further understand the riblet effects on the turbulent flows and the drag reduction mechanism. Compared with the smooth case, different energy variations in the near-wall region and the logarithmic region are observed over riblets. Then, by using a spectral filter of a given wavelength, the time series of the hot-wire data are decomposed into large- and small-scale components. It is indicated that large-scale structures in the logarithmic region impose a footprint (amplitude modulating effect) on the near-wall small-scale structures. By quantifying this footprint, it is found that the interactions between large- and small-scale structures over riblets are weakened in the near-wall region. Furthermore, the bursting process of large and small scales is studied. For both large- and small-scale structures, a shorter bursting duration and a higher bursting frequency are observed over the riblet surface, which indicates that riblets impede the formation of large- and small-scale bursting events. The flow physics behind these phenomena are also discussed in detail.


2019 ◽  
Vol 32 (11) ◽  
pp. 2433-2442 ◽  
Author(s):  
Guangyao CUI ◽  
Chong PAN ◽  
Di WU ◽  
Qingqing YE ◽  
Jinjun WANG

2019 ◽  
Vol 348 ◽  
pp. 234-256
Author(s):  
G. Deolmi ◽  
S. Müller ◽  
M. Albers ◽  
P.S. Meysonnat ◽  
W. Schröder

2019 ◽  
Vol 2019 (0) ◽  
pp. OS1-02
Author(s):  
Renta Hayashi ◽  
Shinji Tamano ◽  
Toru Yamada ◽  
Yohei Morinishi

Sign in / Sign up

Export Citation Format

Share Document