scholarly journals Age-related changes in the rhesus macaque eye

2021 ◽  
pp. 108754
Author(s):  
Kira H. Lin ◽  
Tu Tran ◽  
Soohyun Kim ◽  
Sangwan Park ◽  
Jiajia Chen ◽  
...  
2021 ◽  
Author(s):  
Kira Lin ◽  
Tu Tran ◽  
Soohyun Kim ◽  
Sangwan Park ◽  
Jiajia Chen ◽  
...  

Purpose: To assess age-related changes in the rhesus macaque eye and evaluate them to corresponding human age-related eye disease. Methods: Data from eye exams and imaging tests including intraocular pressure (IOP), lens thickness, axial length, and retinal optical coherence tomography (OCT) images were evaluated from 142 individuals and statistically analyzed for age-related changes. Quantitative autofluorescence (qAF) was measured as was the presence of macular lesions as related to age. Results: Ages of the 142 rhesus macaques ranged from 0.7 to 29 years (mean=16.4 years, stdev=7.5 years). Anterior segment measurements such as IOP, lens thickness, and axial length were acquired. Advanced retinal imaging in the form of optical coherence tomography and qAF were obtained. Quantitative assessments were made and variations by age groups were analyzed to compare with established age-related changes in human eyes. Quantitative analysis of data revealed age-related increase in intraocular pressure, ocular biometry (lens thickness and axial length), and presence of macular lesions. Age-related changes in thicknesses of retinal layers on OCT were observed and quantified. Age was correlated with increased qAF. Conclusions: The rhesus macaque has age-related ocular changes similar to humans. IOP increases with age while retinal ganglion cell layer thickness decreases. Macular lesions develop in some aged animals. Our findings support the concept that rhesus macaques may be useful for the study of important age-related diseases such as glaucoma, macular diseases, and cone disorders, and for development of therapies for these diseases.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Dibyadeep Datta ◽  
Shannon N. Leslie ◽  
Yury M. Morozov ◽  
Alvaro Duque ◽  
Pasko Rakic ◽  
...  

Abstract Background Cognitive impairment in schizophrenia, aging, and Alzheimer’s disease is associated with spine and synapse loss from the dorsolateral prefrontal cortex (dlPFC) layer III. Complement cascade signaling is critical in driving spine loss and disease pathogenesis. Complement signaling is initiated by C1q, which tags synapses for elimination. C1q is thought to be expressed predominately by microglia, but its expression in primate dlPFC has never been examined. The current study assayed C1q levels in aging primate dlPFC and rat medial PFC (mPFC) and used immunoelectron microscopy (immunoEM), immunoblotting, and co-immunoprecipitation (co-IP) to reveal the precise anatomical distribution and interactions of C1q. Methods Age-related changes in C1q levels in rhesus macaque dlPFC and rat mPFC were examined using immunoblotting. High-spatial resolution immunoEM was used to interrogate the subcellular localization of C1q in aged macaque layer III dlPFC and aged rat layer III mPFC. co-IP techniques quantified protein-protein interactions for C1q and proteins associated with excitatory and inhibitory synapses in macaque dlPFC. Results C1q levels were markedly increased in the aged macaque dlPFC. Ultrastructural localization found the expected C1q localization in glia, including those ensheathing synapses, but also revealed extensive localization within neurons. C1q was found near synapses, within terminals and in spines, but was also observed in dendrites, often near abnormal mitochondria. Similar analyses in aging rat mPFC corroborated the findings in rhesus macaques. C1q protein increasingly associated with PSD95 with age in macaque, consistent with its synaptic localization as evidenced by EM. Conclusions These findings reveal novel, intra-neuronal distribution patterns for C1q in the aging primate cortex, including evidence of C1q in dendrites. They suggest that age-related changes in the dlPFC may increase C1q expression and synaptic tagging for glial phagocytosis, a possible mechanism for age-related degeneration.


AGE ◽  
2011 ◽  
Vol 34 (5) ◽  
pp. 1111-1121 ◽  
Author(s):  
Henryk F. Urbanski ◽  
Krystina G. Sorwell

Aging Cell ◽  
2011 ◽  
Vol 10 (1) ◽  
pp. 66-79 ◽  
Author(s):  
Ji Min Yu ◽  
Xiying Wu ◽  
Jeffrey M. Gimble ◽  
Xiaoyan Guan ◽  
Michael A. Freitas ◽  
...  

1998 ◽  
Vol 62 (2) ◽  
pp. 115-122 ◽  
Author(s):  
G. De BENEDICTIS ◽  
L. CAROTENUTO ◽  
G. CARRIERI ◽  
M. De LUCA ◽  
E. FALCONE ◽  
...  

2012 ◽  
Author(s):  
Chad S. Rogers ◽  
Larry L. Jacoby ◽  
Mitchell S. Sommers ◽  
Arthur Wingfield

Sign in / Sign up

Export Citation Format

Share Document