A reduction theorem for the existence of ⁎-clean finite group rings

2020 ◽  
Vol 64 ◽  
pp. 101674
Author(s):  
Bocong Chen ◽  
Jing Huang
1991 ◽  
Vol 34 (2) ◽  
pp. 217-228 ◽  
Author(s):  
K. A. Brown ◽  
H. Marubayashi ◽  
P. F. Smith

Let R be a ring and G a polycyclic-by-finite group. In this paper, it is determined, in terms of properties of R and G, when the group ring R[G] is a prime Krull order and when it is a price v-HC order. The key ingredient in obtaining both characterizations is the first author's earlier study of height one prime ideals in the ring R[G[.


2017 ◽  
Vol 16 (02) ◽  
pp. 1750025 ◽  
Author(s):  
Jinke Hai ◽  
Shengbo Ge ◽  
Weiping He

Let [Formula: see text] be a finite group and let [Formula: see text] be the holomorph of [Formula: see text]. If [Formula: see text] is a finite nilpotent group or a symmetric group [Formula: see text] of degree [Formula: see text], then the normalizer property holds for [Formula: see text].


1976 ◽  
Vol 28 (5) ◽  
pp. 954-960 ◽  
Author(s):  
César Polcino Milies

Let R be a ring with unit element and G a finite group. We denote by RG the group ring of the group G over R and by U(RG) the group of units of this group ring.The study of the nilpotency of U(RG) has been the subject of several papers.


2018 ◽  
Vol 25 (02) ◽  
pp. 181-188 ◽  
Author(s):  
Jinke Hai ◽  
Yixin Zhu

Let G be an extension of a finite quasinilpotent group by a finite group. It is shown that under some conditions every Coleman automorphism of G is an inner automorphism. The interest in such automorphisms arose from the study of the normalizer problem for integral group rings. Our theorems generalize some well-known results.


1991 ◽  
Vol 14 (1) ◽  
pp. 149-153
Author(s):  
George Szeto ◽  
Linjun Ma

LetAbe a ring with1,Cthe center ofAandG′an inner automorphism group ofAinduced by {Uαin​A/αin a finite groupGwhose order is invertible}. LetAG′be the fixed subring ofAunder the action ofG′.IfAis a Galcis extension ofAG′with Galois groupG′andCis the center of the subring∑αAG′UαthenA=∑αAG′Uαand the center ofAG′is alsoC. Moreover, if∑αAG′Uαis Azumaya overC, thenAis a projective group ring.


1993 ◽  
Vol 35 (3) ◽  
pp. 367-379 ◽  
Author(s):  
E. Jespers ◽  
M. M. Parmenter

LetGbe a finite group,(ZG) the group of units of the integral group ring ZGand1(ZG) the subgroup of units of augmentation 1. In this paper, we are primarily concerned with the problem of describing constructively(ZG) for particular groupsG.This has been done for a small number of groups (see [11] for an excellent survey), and most recently Jespers and Leal [3] described(ZG) for several 2-groups. While the situation is clear for all groups of order less than 16, not all groups of order 16 were discussed in their paper. Our main aim is to complete the description of(ZG) for all groups of order 16. Since the structure of the unit group of abelian groups is very well known (see for example [10]), we are only interested in the non-abelian case.


Sign in / Sign up

Export Citation Format

Share Document