A vibration analysis of stiffened plates under heavy fluid loading by an energy finite element analysis formulation

2005 ◽  
Vol 41 (11-12) ◽  
pp. 1056-1078 ◽  
Author(s):  
Weiguo Zhang ◽  
Aimin Wang ◽  
Nickolas Vlahopoulos ◽  
Kuangcheng Wu
2013 ◽  
Vol 470 ◽  
pp. 1020-1023
Author(s):  
Yang Yang ◽  
Xi Liang Chen ◽  
Wen Wu Zhang

The high frequency vibration analysis of a composite laminate plate structure subjected to impact loads was investigated by using method of energy finite element analysis (EFEA). The time and space averaged energy density was used as the primary variable to form the governing differential equations. The multilayer laminate plate is simplified to be equivalent isotropic plate using the average concept, such as the average damping loss factor and the average group speed. The global system of EFEA equations can be solved numerically and the energy density distribution within the whole system can then be obtained. The EFEA numerical results for composite laminate plate structure were validated through comparison with those of very dense conventional finite element analysis (FEA).


Author(s):  
Robert X. Wang ◽  
Graham M. Chapman

Abstract This paper reports on the application of Electronic Speckle Pattern Interferometry (ESPI) technique in vibration measurement of turbine blading. Using the time-averaged mode of ESPI, the first six modes of a turbocharger blade with airfoil profile were identified. The effect of the complicated profile of the blade was established by studying simplified model blades. Coupled modes were identified and successfully separated. Experimental results are compared with those obtained using finite element analysis.


2000 ◽  
Author(s):  
Christopher D. Park ◽  
Linda P. Franzoni

Abstract Two model problems are solved using a combination of Analytical/Numerical Matching (ANM) and Finite Element Analysis (FEA). The first problem is that of a thick, finite length beam driven by the motion of a small rigid support attached to its lower boundary. The second problem is a thick, infinitely long fluid-loaded beam driven by the motion of periodically spaced rigid supports (identical to the support of the first problem). The ANM process divides an original problem into local, matching, and global sub-problems through the use of a smooth force and the principle of superposition. In the two model problems presented, the same high-resolution local (in vacuo) problem is solved using FEA. The fluid loading effects can be accounted for entirely by the global problem. The problems presented show that ANM is a computationally efficient method that retains the high accuracy needed near structural discontinuities.


2019 ◽  
Vol 44 (1) ◽  
pp. 49-59
Author(s):  
Nilesh Chandgude ◽  
Nitin Gadhave ◽  
Ganesh Taware ◽  
Nitin Patil

In this article, three small wind turbine blades of different materials were manufactured. Finite element analysis was carried out using finite element software ANSYS 14.5 on modeled blades of National Advisory Committee for Aeronautics 4412 airfoil profile. From finite element analysis, first, two flap-wise natural frequencies and mode shapes of three different blades are obtained. Experimental vibration analysis of manufactured blades was carried out using fast Fourier transform analyzer to find the first two flap-wise natural frequencies. Finally, the results obtained from the finite element analysis and experimental test of three blades are compared. Based on vibration analysis, we found that the natural frequency of glass fiber reinforced plastic blade reinforced with aluminum sheet metal (small) strips increases compared with the remaining blades. An increase in the natural frequency indicates an increase in the stiffness of blade.


Author(s):  
S. N. Medyanik ◽  
N. Vlahopoulos

The Energy Finite Element Analysis (EFEA) has been developed for modeling coupled structural-acoustic systems at mid-to-high frequencies when conventional finite element methods are no longer computationally efficient because they require very fine meshes. In standard Finite Element Analysis (FEA) approach, governing differential equations are formulated in terms of displacements which vary harmonically with space. This requires larger numbers of elements at higher frequencies when wavelengths become smaller. In the EFEA, governing differential equations are formulated in terms of energy density that is spatially averaged over a wavelength and time averaged over a period. The resulting solutions vary exponentially with space which makes them smooth and allows for using much coarser meshes. However, current EFEA formulations require exact matching between the meshes at the boundaries between structural and acoustic domains. This creates practical inconveniences in applying the method as well as limits its use to only fully compatible meshes. In this paper, a new formulation is presented that allows for using incompatible meshes in EFEA modeling, when shapes and/or sizes of elements at structural-acoustic interfaces do not match. In the main EFEA procedure, joints formulations between structural and acoustic domains have been changed in order to deal with non-matching elements. In addition, the new Pre-EFEA procedure which allows for automatic searching and formation of the new types of joints is developed for models with incompatible meshes. The new method is tested using a spherical shaped structural-acoustic interface. Results for incompatible meshes are validated by comparing to solutions obtained using regular compatible meshes. The effects of mesh incompatibility on the accuracy of results are discussed.


Sign in / Sign up

Export Citation Format

Share Document