loading effects
Recently Published Documents


TOTAL DOCUMENTS

667
(FIVE YEARS 127)

H-INDEX

38
(FIVE YEARS 6)

Author(s):  
Lahis Souza de Assis ◽  
Matheus Fernandes Dal Sasso ◽  
Michèle Cristina Resende Farage ◽  
Flávia de Souza Bastos ◽  
Anne-Lise Beaucour

Abstract Concrete is a widespread material all over the world. Due to this material’s heterogeneity and structural complexity, predicting the behavior of concrete structures under extreme environmental conditions is a very challenging task. High temperatures lead to microstructural changes which affect the macrostructural performance. In this context, computational tools that allow the simulation of structures may assist the analysis, by reproducing varied situations of thermal and mechanical loading and boundary conditions. In order to contribute to this scenario, this study proposes a numerical methodology to simulate the thermomechanical behavior of concrete under temperature gradients, through inverse analyses and a user subroutine implemented in Abaqus software. Thermal loading effects were considered as loading data for a damage model. Experimental data available in the literature was adopted for adjustment and validation purposes. The preliminary results presented herein encourage further improvements so as to allow realistic simulations of such an important aspect of concrete’s behavior.


Author(s):  
Sharafiz Abdul Rahim ◽  
Graeme Manson

AbstractThis paper highlights kernel principal component analysis (KPCA) in distinguishing damage-sensitive features from the effects of liquid loading on frequency response. A vibration test is performed on an aircraft wing box incorporated with a liquid tank that undergoes various tank loading. Such experiment is established as a preliminary study of an aircraft wing that undergoes operational load change in a fuel tank. The operational loading effects in a mechanical system can lead to a false alarm as loading and damage effects produce a similar reduction in the vibration response. This study proposes a non-nonlinear transformation to separate loading effects from damage-sensitive features. Based on a baseline data set built from a healthy structure that undergoes systematic tank loading, the Gaussian parameter is measured based on the distance of the baseline data set to various damage states. As a result, both loading and damage features expand and are distinguished better. For novelty damage detection, Mahalanobis square distance (MSD) and Monte Carlo-based threshold are applied. The main contribution of this project is the nonlinear PCA projection to understand the dynamic behavior of the wing box under damage and loading influences and to differentiate both effects that arise from the tank loading and damage severities.


2021 ◽  
pp. 136943322110463
Author(s):  
Dong Guo ◽  
Wan-Yang Gao ◽  
Dilum Fernando ◽  
Jian-Guo Dai

Steel/concrete structures strengthened with externally bonded FRP plates may be subjected to significant temperature variations during their service time. Such temperature variation (i.e., thermal loading) may significantly influence the debonding mechanism in FRP-strengthened structures due to the thermal incompatibility between the FRP plate and the substrate as well as the temperature-induced bond degradation at the FRP-to-steel/concrete interface. However, limited information is available on the effect of temperature variation on the debonding failure in FRP-strengthened beams. This paper presents a new and closed-form solution to investigate the plate-end debonding failure of the FRP-strengthened beam subjected to combined thermal and mechanical (i.e., flexural) loading. A bilinear bond-slip model is used to describe the bond behavior of the FRP-to-substrate interface. The analytical solution is validated through comparisons with finite element analysis results regarding the distributions of the interfacial shear stresses, the interfacial slips and the axial stresses of the FRP plate. Given that a constant bond-slip relationship is adopted, it is observed that an increase in service temperature will lead to an increased interfacial slip at the plate end and consequently a reduced plate-end debonding load, and vice versa. Further parametric studies have indicated that the thermal loading effects become more significant when shorter and stiffer FRP plates are applied for strengthening.


2021 ◽  
Author(s):  
Chenggang Yuan ◽  
Andrew Plummer ◽  
Min Pan

Abstract Switched inertance hydraulic converters (SIHC) are new digital hydraulic devices which provide an alternative to conventional proportional or servo valve-controlled systems in hydraulic fluid power. SIHCs can adjust and control flow and pressure by means of using digital control signals that do not rely on throttling the flow and dissipation of power, and provide hydraulic systems with high-energy efficiency, good controllability, and insensitivity to contamination. A flow booster is one configuration of SIHCs which can deliver more flow than the supply flow. In this article, the loading effects of SIHCs are investigated by applying a time-varying load on the flow booster. A control system consisting of a PI controller and a switching frequency optimizer was designed to operate a flow booster at its optimal switching frequencies and switching ratios to maximize system efficiency when the load varies. Simulated results showed that the flow booster with the proposed controller has very good dynamic response and can be operated at an average efficiency of 70% with a time-varying load. Compared with only using a PI controller, the proposed controller can improve the overall efficiency by up to 20%. As time-varying loading conditions are commonly found in hydraulic applications, this work constitutes an important contribution to the design and development of high-efficiency SIHCs.


2021 ◽  
Vol 11 (5) ◽  
pp. 7585-7590
Author(s):  
G. A. Alshammari ◽  
F. A. Alshammari ◽  
T. Guesmi ◽  
B. M. Alshammari ◽  
A. S. Alshammari ◽  
...  

Power dispatch has become an important issue due to the high integration of Wind Power (WP) in power grids. Within this context, this paper presents a new Particle Swarm Optimization (PSO) based strategy for solving the stochastic Economic Emission Dispatch Problem (EEDP). This problem was solved considering several constraints such as power balance, generation limits, and Valve Point Loading Effects (VPLEs). The power balance constraint is described by a chance constraint to consider the impact of WP intermittency on the EEDP solution. In this study, the chance constraint represents the tolerance that the power balance constraint cannot meet. The suggested framework was successfully evaluated on a ten-unit system. The problem was solved for various threshold tolerances to study further the impact of WP penetration.


Marine Drugs ◽  
2021 ◽  
Vol 19 (10) ◽  
pp. 536
Author(s):  
Chaojie Xu ◽  
Ronge Xing ◽  
Song Liu ◽  
Yukun Qin ◽  
Kecheng Li ◽  
...  

Drug carrier nanoparticles (NPs) were prepared by the polyelectrolyte method, with chitosan sulfate, with different substituents and quaternary ammonium chitosan, including C236-HACC NPs, C36-HACC NPs, and C6-HACC NPs. To evaluate whether the NPs are suitable for loading different antigens, we chose bovine serum albumin (BSA), ovalbumin (OVA), and myoglobin (Mb) as model antigens to investigate the encapsulation effect of the NPs. The characteristics (size, potential, and encapsulation efficiency) of the NPs were measured. Moreover, the NPs with higher encapsulation efficiency were selected for the immunological activity research. The results showed that chitosan derivative NPs with different substitution sites had different loading effects on the three antigens, and the encapsulation rate of BSA and OVA was significantly better than that of Mb. Moreover, the NPs encapsulated with different antigens have different immune stimulating abilities to DCS cells, the immune effect of OVA-coated NPs was significantly better than that of BSA-coated NPs and blank NPs, especially C236-HACC-OVA NPs. Furthermore, we found that C236-HACC-OVA NPs could increase the phosphorylation level of intracellular proteins to activate cell pathways. Therefore, C236-HACC NPs are more suitable for the loading of antigens similar to the OVA structure.


Author(s):  
Andrew R Beadling ◽  
Michael G. Bryant ◽  
Duncan Dowson ◽  
Anne Neville

Following the high clinical failure rates of metal-on-metal total hip replacements much work has been undertaken to investigate their poor performance. So called adverse loading scenarios such as acetabular inclination and microseparation have been attributed to indicators for failure of the implants. The ISO hip simulation standards (ISO 14242:1) still rely on gravimetric and ex situ analysis, considering only the total wear during articulation. Live in situ sensing can provide valuable insight into the degradation mechanisms of metallic interfaces under such scenarios. Clinical 28 mm diameter metal-on-metal components were articulated in a full-ISO hip simulator. The bearings were subjected to increasing angles of acetabular inclination and retroversion over short-term periods of articulation. Corrosive degradation was monitored during sliding by means of an in situ three-electrode cell. Changing acetabular inclination from 30° to 50° resulted in greater cathodic shifts in OCP upon the initiation of sliding; from −50 mV to as much as −150 mV. Under anodic polarisation (0 mV vs. Ag/AgCl) the resultant currents at the initiation of sliding also increased significantly with inclination; from approximately 4–10 µA to over 120 µA. Increased retroversion of 20° also resulted in increased anodic currents of 55–60 µA. Changing the nature of articulation demonstrated increased corrosive material loss compared to a standard ISO 14242 profile. The sole use of gravimetric assessment to determine a wear rate for hip replacement bearings under simulation can therefore neglect important degradation mechanisms, such as tribocorrosive loss in devices with metal sliding interfaces.


Author(s):  
Dianjun Gong ◽  
Jie Gao ◽  
Jiyuan Zhai

Radio frequency (RF) parameters design is an important part in RF system design. In this paper we will introduce a general method of choosing appropriate RF parameters for a circular [Formula: see text] collider. The RF parameters are determined with several analytical formulas. With this method, the RF parameters of the Circular Electron–Positron Collider (CEPC) for Conceptual Design Report (CDR) are verified. A new set of RF parameters for the CEPC with 1-cell LG Nb cavities is also designed. Besides, the RF parameters of the CEPC Advanced Partial Double Ring (APDR) and the CEPC Damping Ring (DR) are designed for the first time, and a preliminary study of the beam loading effects of APDR and DR is also carried out.


Sign in / Sign up

Export Citation Format

Share Document