scholarly journals Optimal forest rotation under carbon pricing and forest damage risk

2020 ◽  
Vol 115 ◽  
pp. 102131 ◽  
Author(s):  
Tommi Ekholm
2020 ◽  
Author(s):  
Ninni Saarinen ◽  
Mikko Vastaranta ◽  
Eija Honkavaara ◽  
Michael A. Wulder ◽  
Joanne C. White ◽  
...  

Wind damage is known for causing threats to sustainable forest management and yield value in boreal forests. Information about wind damage risk can aid forest managers in understanding and possibly mitigating damage impacts especially when wind damage events have increased in recent years.The objective of this research was to better understand and quantify drivers of wind damage, and to map the probability of wind damage and to provide information that could be used to support decision making in forest management planning, as well as in other sectors (e.g. electricity companies). To accomplish this, we used open-access airborne scanning light detection and ranging (LiDAR) data. LiDAR data can provide wall-to-wall coverage and are best suited for monitoring of the dominant trees. In addition multitemporal LiDAR is highly capable of monitoring abiotic tree or stand level changes. The LiDAR data used are openly accessible for public from NLS and are mainly used for generating digital terrain model (DTM). Potential drivers associated with the probability of wind-induced forest damage were examined using a multivariate logistic regression model which was well suited to the discrete nature of the dependent variable (i.e., damage, no damage) and it has been used widely in the modelling of forest disturbances. Risk model predictors related to topography and vegetation height were extracted from the LiDAR-derived surface models such as DTM and canopy height model (CHM). The strongest predictors in the risk model were mean canopy height and mean elevation. Damaged sample grid cells covered 45,6% of the entire sample and they were mainly dominated by Norway spruce. CHM mean and maximum were higher in damaged sample cells which can be expected to correlate with the result where mean volume was also larger in damaged sample cells than in undamaged. Regression model output was a continuous probability surface whereby the probability for wind damage is interpreted as risk (e.g. areas with high probability of wind damage can be described as high risk areas). With increasing frequency of wind damage events, there is a need to identify areas of high wind damage risk. The selected predictor variables, mean elevation describing local topography and mean canopy height, can provide valuable information on the damage probability (i.e. risk) in a robust way.


Author(s):  
N. Saarinen ◽  
M. Vastaranta ◽  
E. Honkavaara ◽  
M. A. Wulder ◽  
J. C. White ◽  
...  

Wind damage is known for causing threats to sustainable forest management and yield value in boreal forests. Information about wind damage risk can aid forest managers in understanding and possibly mitigating damage impacts. The objective of this research was to better understand and quantify drivers of wind damage, and to map the probability of wind damage. To accomplish this, we used open-access airborne scanning light detection and ranging (LiDAR) data. The probability of wind-induced forest damage (PDAM) in southern Finland (61°N, 23°E) was modelled for a 173 km<sup>2</sup> study area of mainly managed boreal forests (dominated by Norway spruce and Scots pine) and agricultural fields. Wind damage occurred in the study area in December 2011. LiDAR data were acquired prior to the damage in 2008. High spatial resolution aerial imagery, acquired after the damage event (January, 2012) provided a source of model calibration via expert interpretation. A systematic grid (16 m x 16 m) was established and 430 sample grid cells were identified systematically and classified as damaged or undamaged based on visual interpretation using the aerial images. Potential drivers associated with PDAM were examined using a multivariate logistic regression model. Risk model predictors were extracted from the LiDAR-derived surface models. Geographic information systems (GIS) supported spatial mapping and identification of areas of high PDAM across the study area. The risk model based on LiDAR data provided good agreement with detected risk areas (73 % with kappa-value 0,47). The strongest predictors in the risk model were mean canopy height and mean elevation. Our results indicate that open-access LiDAR data sets can be used to map the probability of wind damage risk without field data, providing valuable information for forest management planning.


1976 ◽  
Vol 19 (2) ◽  
pp. 216-224 ◽  
Author(s):  
James T. Yates ◽  
Jerry D. Ramsey ◽  
Jay W. Holland

The purpose of this study was to compare the damage risk of 85 and 90 dBA of white noise for equivalent full-day exposures. The damage risk of the two noise levels was determined by comparing the temporary threshold shift (TTS) of 12 subjects exposed to either 85 or 90 dBA of white noise for equivalent half- and full-day exposures. TTS was determined by comparing the pre- and postexposure binaural audiograms of each subject at 1, 2, 3, 4, 6, and 8 kHz. It was concluded that the potential damage risk, that is, hazardous effect, of 90 dBA is greater than 85 dBA of noise for equivalent full-day exposures. The statistical difference between the overall effects of equivalent exposures to 85 dBA as compared to 90 dBA of noise could not be traced to any one frequency. The damage risk of a full-day exposure to 85 dBA is equivalent to that of a half-day exposure to 90 dBA of noise. Within the limits of this study, TTS t was as effective as TTS 2 for estimating the damage risk of noise exposure.


10.1596/31717 ◽  
2019 ◽  
Author(s):  
Andualem Telaye ◽  
Pablo Benitez ◽  
Seneshaw Tamru ◽  
Haileselassie Medhin ◽  
Michael Toman

10.1596/33490 ◽  
2020 ◽  
Author(s):  
Christophe De Gouvello ◽  
Dominique Finon ◽  
Pierre Guigon

2021 ◽  
Author(s):  
Stewart J. Reid ◽  
Ruben E. Perez ◽  
Peter W. Jansen ◽  
Cees Bil

Sign in / Sign up

Export Citation Format

Share Document