Caloric restriction protects livers from ischemia/reperfusion damage by preventing Ca 2+ -induced mitochondrial permeability transition

2017 ◽  
Vol 110 ◽  
pp. 219-227 ◽  
Author(s):  
Sergio L. Menezes-Filho ◽  
Ignacio Amigo ◽  
Fernanda M. Prado ◽  
Natalie C. Ferreira ◽  
Marcia K. Koike ◽  
...  
2021 ◽  
Author(s):  
Julian DC Serna ◽  
Andressa G Amaral ◽  
Camille C Caldeira da Silva ◽  
Ana C Bonassa ◽  
Sergio L Menezes ◽  
...  

Caloric restriction (CR) prevents obesity, promotes healthy aging, and increases resilience against several pathological stimuli in laboratory rodents. At the mitochondrial level, protection promoted by CR in the brain and liver is related to higher calcium uptake rates and capacities, avoiding Ca2+-induced mitochondrial permeability transition. Dietary restriction has also been shown to increase kidney resistance against damaging stimuli such as ischemia/reperfusion, but if these effects are related to similar mitochondrial adaptations had not yet been uncovered. Here, we characterized changes in mitochondrial function in response to six months of CR in rats, measuring bioenergetic parameters, redox balance and calcium homeostasis. CR promoted an increase in mitochondrial oxygen consumption rates under non-phosphorylating and uncoupled conditions. While CR prevents mitochondrial reactive oxygen species production in many tissues, in kidney we found that mitochondrial H2O2 release was enhanced, although levels of carbonylated proteins and methionine sulfoxide were unchanged. Surprisingly, and opposite to the effects observed in brain and liver, mitochondria from CR animals are more prone to Ca2+-induced mitochondrial permeability transition. CR mitochondria also displayed higher calcium uptake rates, which were not accompanied by changes in calcium efflux rates, nor related to altered inner mitochondrial membrane potentials or the amounts of the mitochondrial calcium uniporter (MCU). Instead, increased mitochondrial calcium uptake rates in CR kidneys correlate with a loss of MICU2, an MCU modulator. Interestingly, MICU2 is also modulated by CR in liver, suggesting it has a broader diet-sensitive regulatory role controlling mitochondrial calcium homeostasis. Together, our results highlight the organ-specific bioenergetic, redox, and ionic transport effects of CR. Specifically, we describe the regulation of the expression of MICU2 and its effects on mitochondrial calcium transport as a novel and interesting aspect of the metabolic responses to dietary interventions.


2011 ◽  
Vol 300 (4) ◽  
pp. H1237-H1251 ◽  
Author(s):  
María C. Villa-Abrille ◽  
Eugenio Cingolani ◽  
Horacio E. Cingolani ◽  
Bernardo V. Alvarez

Inhibition of Na+/H+ exchanger 1 (NHE1) reduces cardiac ischemia-reperfusion (I/R) injury and also cardiac hypertrophy and failure. Although the mechanisms underlying these NHE1-mediated effects suggest delay of mitochondrial permeability transition pore (MPTP) opening, and reduction of mitochondrial-derived superoxide production, the possibility of NHE1 blockade targeting mitochondria has been incompletely explored. A short-hairpin RNA sequence mediating specific knock down of NHE1 expression was incorporated into a lentiviral vector (shRNA-NHE1) and transduced in the rat myocardium. NHE1 expression of mitochondrial lysates revealed that shRNA-NHE1 transductions reduced mitochondrial NHE1 (mNHE1) by ∼60%, supporting the expression of NHE1 in mitochondria membranes. Electron microscopy studies corroborate the presence of NHE1 in heart mitochondria. Immunostaining of rat cardiomyocytes also suggests colocalization of NHE1 with the mitochondrial marker cytochrome c oxidase. To examine the functional role of mNHE1, mitochondrial suspensions were exposed to increasing concentrations of CaCl2 to induce MPTP opening and consequently mitochondrial swelling. shRNA-NHE1 transduction reduced CaCl2-induced mitochondrial swelling by 64 ± 4%. Whereas the NHE1 inhibitor HOE-642 (10 μM) decreased mitochondrial Ca2+-induced swelling in rats transduced with nonsilencing RNAi (37 ± 6%), no additional HOE-642 effects were detected in mitochondria from rats transduced with shRNA-NHE1. We have characterized the expression and function of NHE1 in rat heart mitochondria. Because mitochondria from rats injected with shRNA-NHE1 present a high threshold for MPTP formation, the beneficial effects of NHE1 inhibition in I/R resulting from mitochondrial targeting should be considered.


2005 ◽  
Vol 289 (5) ◽  
pp. H2153-H2158 ◽  
Author(s):  
L. Gomez ◽  
N. Chavanis ◽  
L. Argaud ◽  
L. Chalabreysse ◽  
O. Gateau-Roesch ◽  
...  

The Fas/Fas ligand and mitochondria pathways have been involved in cell death in several cell types. We combined the genetic inactivation of the Fas receptor ( lpr mice), on the one hand, to the pharmacological inhibition of the mitochondrial permeability transition pore (mPTP), on the other hand, to investigate which of these pathways is predominantly activated during prolonged ischemia-reperfusion. Anesthetized C57BL/6JICO (control) and C57BL/6- lpr mice were pretreated with either saline or cyclosporin A (CsA; 40 mg/kg, 3 times a day), an inhibitor of the mPTP, and underwent 25 min of ischemia and 24 h of reperfusion. After 24 h of reperfusion, hearts were harvested: infarct size was assessed by 2,3,5-triphenyltetrazolium chloride staining, myocardial apoptosis by caspase 3 activity, and mitochondrial permeability transition by Ca2+-induced mPTP opening using a potentiometric approach. Infarct size was comparable in untreated control and lpr mice, ranging from 77 ± 5% to 83 ± 3% of the area at risk. CsA significantly reduced infarct size in control and lpr hearts. Control and lpr hearts exhibited comparable increase in caspase 3 activity that averaged 57 ± 18 and 49 ± 5 pmol·min−1·mg−1, respectively. CsA treatment significantly reduced caspase 3 activity in control and lpr hearts. The Ca2+ overload required to open the mPTP was decreased to a similar extent in lpr and controls. CsA significantly attenuated Ca2+-induced mPTP opening in both groups. Our results suggest that the Fas pathway likely plays a minor role, whereas mitochondria are preferentially involved in mice cardiomyocyte death after a lethal ischemia-reperfusion injury.


Sign in / Sign up

Export Citation Format

Share Document