calcium uptake
Recently Published Documents


TOTAL DOCUMENTS

1433
(FIVE YEARS 74)

H-INDEX

71
(FIVE YEARS 6)

2021 ◽  
Author(s):  
Julian DC Serna ◽  
Andressa G Amaral ◽  
Camille C Caldeira da Silva ◽  
Ana C Bonassa ◽  
Sergio L Menezes ◽  
...  

Caloric restriction (CR) prevents obesity, promotes healthy aging, and increases resilience against several pathological stimuli in laboratory rodents. At the mitochondrial level, protection promoted by CR in the brain and liver is related to higher calcium uptake rates and capacities, avoiding Ca2+-induced mitochondrial permeability transition. Dietary restriction has also been shown to increase kidney resistance against damaging stimuli such as ischemia/reperfusion, but if these effects are related to similar mitochondrial adaptations had not yet been uncovered. Here, we characterized changes in mitochondrial function in response to six months of CR in rats, measuring bioenergetic parameters, redox balance and calcium homeostasis. CR promoted an increase in mitochondrial oxygen consumption rates under non-phosphorylating and uncoupled conditions. While CR prevents mitochondrial reactive oxygen species production in many tissues, in kidney we found that mitochondrial H2O2 release was enhanced, although levels of carbonylated proteins and methionine sulfoxide were unchanged. Surprisingly, and opposite to the effects observed in brain and liver, mitochondria from CR animals are more prone to Ca2+-induced mitochondrial permeability transition. CR mitochondria also displayed higher calcium uptake rates, which were not accompanied by changes in calcium efflux rates, nor related to altered inner mitochondrial membrane potentials or the amounts of the mitochondrial calcium uniporter (MCU). Instead, increased mitochondrial calcium uptake rates in CR kidneys correlate with a loss of MICU2, an MCU modulator. Interestingly, MICU2 is also modulated by CR in liver, suggesting it has a broader diet-sensitive regulatory role controlling mitochondrial calcium homeostasis. Together, our results highlight the organ-specific bioenergetic, redox, and ionic transport effects of CR. Specifically, we describe the regulation of the expression of MICU2 and its effects on mitochondrial calcium transport as a novel and interesting aspect of the metabolic responses to dietary interventions.


2021 ◽  
Vol 12 (12) ◽  
Author(s):  
Yun-Fei Yang ◽  
Wu Yang ◽  
Zhi-Yin Liao ◽  
Yong-Xin Wu ◽  
Zhen Fan ◽  
...  

AbstractAge-related loss of skeletal muscle mass and function, termed sarcopenia, could impair the quality of life in the elderly. The mechanisms involved in skeletal muscle aging are intricate and largely unknown. However, more and more evidence demonstrated that mitochondrial dysfunction and apoptosis also play an important role in skeletal muscle aging. Recent studies have shown that mitochondrial calcium uniporter (MCU)-mediated mitochondrial calcium affects skeletal muscle mass and function by affecting mitochondrial function. During aging, we observed downregulated expression of mitochondrial calcium uptake family member3 (MICU3) in skeletal muscle, a regulator of MCU, which resulted in a significant reduction in mitochondrial calcium uptake. However, the role of MICU3 in skeletal muscle aging remains poorly understood. Therefore, we investigated the effect of MICU3 on the skeletal muscle of aged mice and senescent C2C12 cells induced by d-gal. Downregulation of MICU3 was associated with decreased myogenesis but increased oxidative stress and apoptosis. Reconstitution of MICU3 enhanced antioxidants, prevented the accumulation of mitochondrial ROS, decreased apoptosis, and increased myogenesis. These findings indicate that MICU3 might promote mitochondrial Ca2+ homeostasis and function, attenuate oxidative stress and apoptosis, and restore skeletal muscle mass and function. Therefore, MICU3 may be a potential therapeutic target in skeletal muscle aging.


2021 ◽  
Vol 22 (23) ◽  
pp. 12694
Author(s):  
Claudia Fecher-Trost ◽  
Karin Wolske ◽  
Christine Wesely ◽  
Heidi Löhr ◽  
Daniel S. Klawitter ◽  
...  

Recently, we reported a case of an infant with neonatal severe under-mineralizing skeletal dysplasia caused by mutations within both alleles of the TRPV6 gene. One mutation results in an in frame stop codon (R510stop) that leads to a truncated, nonfunctional TRPV6 channel, and the second in a point mutation (G660R) that, surprisingly, does not affect the Ca2+ permeability of TRPV6. We mimicked the subunit composition of the unaffected heterozygous parent and child by coexpressing the TRPV6 G660R and R510stop mutants and combinations with wild type TRPV6. We show that both the G660R and R510stop mutant subunits are expressed and result in decreased calcium uptake, which is the result of the reduced abundancy of functional TRPV6 channels within the plasma membrane. We compared the proteomic profiles of a healthy placenta with that of the diseased infant and detected, exclusively in the latter two proteases, HTRA1 and cathepsin G. Our results implicate that the combination of the two mutant TRPV6 subunits, which are expressed in the placenta of the diseased child, is responsible for the decreased calcium uptake, which could explain the skeletal dysplasia. In addition, placental calcium deficiency also appears to be associated with an increase in the expression of proteases.


2021 ◽  
Author(s):  
Juan Qin ◽  
Jingfeng Zhang ◽  
Lianyun Lin ◽  
Omid Haji-Ghassemi ◽  
Zhi Lin ◽  
...  

Several mutations identified in phospholamban (PLN) have been linked to familial dilated cardiomyopathy (DCM) and heart failure, yet the underlying molecular mechanism remains controversial. PLN interacts with sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) and regulates calcium uptake, which is modulated by the protein kinase A (PKA)-dependent phosphorylation of PLN during the fight-or-flight response. Here, we present the crystal structures of the catalytic domain of PKA in complex with wild-type and DCM-mutant PLNs. Our structures, combined with the results from other biophysical and biochemical assays, reveal a common disease mechanism: the mutations in PLN reduce its phosphorylation level by changing its conformation and weakening its interactions with PKA. In addition, we demonstrate that another more ubiquitous SERCA-regulatory peptide, called another-regulin (ALN), shares a similar mechanism mediated by PKA in regulating SERCA activity.


2021 ◽  
Author(s):  
Reshma Taneja ◽  
Hsin Yao Chiu ◽  
Amos Hong Pheng Loh

Embryonal rhabdomyosarcoma (ERMS) is characterized by a failure of cells to complete skeletal muscle differentiation. Although ERMS cells are vulnerable to oxidative stress, the relevance of mitochondrial calcium homeostasis in oncogenesis is unclear. Here, we show that ERMS cell lines as well as primary tumours exhibit elevated expression of the Mitochondrial Calcium Uniporter (MCU). MCU knockdown resulted in impaired mitochondrial calcium uptake and a reduction in mitochondrial reactive oxygen species (mROS) levels. Phenotypically, MCU knockdown cells exhibited reduced cellular proliferation and motility, with an increased propensity to differentiate in vitro and in vivo. RNA-sequencing of MCU knockdown cells revealed a significant reduction in genes involved in TGF? signalling that play prominent roles in oncogenesis and inhibition of myogenic differentiation. Interestingly, modulation of mROS production impacted TGF? signalling. Our study elucidates mechanisms by which mitochondrial calcium dysregulation promotes tumour progression and suggests that targeting the MCU complex to restore mitochondrial calcium homeostasis could be a therapeutic avenue in ERMS.


Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2685
Author(s):  
Iskandar Azmy Harahap ◽  
Joanna Suliburska

Probiotics have potential clinical effects for treating and preventing osteoporosis. Meanwhile, isoflavones have attracted much attention due to their ability to prevent postmenopausal symptoms. Research has established that probiotics and isoflavones can regulate hormones, immune cells, and the gastrointestinal system, acting as links in the gut–bone axis. However, combining the effects of probiotics and isoflavones on calcium status and bone health is a more novel and a still-evolving research area. Lactobacillus and Bifidobacterium are the foremost strains that influence bone health to a significant extent. Among the isoflavones, daidzein, genistein, and the metabolites of genistein (such as equol) stimulate bone formation. It can be concluded that probiotics and isoflavones promote bone health by regulating calcium uptake, gut microbiota, and various metabolic pathways that are associated with osteoblast activity and bone formation. Nevertheless, further experiments of probiotics and isoflavones are still necessary to confirm the association between calcium bioavailability and bone health.


2021 ◽  
Author(s):  
Riley EG Cleverdon ◽  
Kennedy C Whitley ◽  
Daniel M Marko ◽  
Sophie I Hamstra ◽  
Jessica L Braun ◽  
...  

The C57BL/10ScSn-Dmdmdx/J (C57 mdx) mouse is the most commonly used murine model of Duchenne muscular dystrophy (DMD) but displays a mild phenotype with a late onset, greatly limiting translatability to clinical research. In consequence, the D2.B10-Dmdmdx/J (D2 mdx) mouse was created and produces a more severe, early onset phenotype. Mechanistic insights of the D2 mdx phenotype have yet to be elucidated, specifically related to sarcoplasmic reticulum (SR) calcium (Ca2+) handling. In our study, we aimed to determine if SR Ca2+ handling differences in the D2 mdx versus the C57 mdx mouse could explain model phenotypes. Firstly, analyses determined that D2 mdx mice ambulate less and have weaker muscles, but have greater energy expenditure than C57 counterparts. SR Ca2+ handling measures determined that only D2 mdx mice have impaired SR calcium intake in the gastrocnemius, left ventricle and diaphragm. This was coupled with decrements in maximal sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) activity and greater activation of the Ca2+-activated protease, calpain, in the gastrocnemius. Overall, our study is the first to determine that SR Ca2+ handling is impaired in the D2 mdx mouse, specifically at the level of the SERCA pump. 


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258433
Author(s):  
Supathra Phoaubon ◽  
Kornkamon Lertsuwan ◽  
Jarinthorn Teerapornpuntakit ◽  
Narattaphol Charoenphandhu

Abnormal calcium absorption and iron overload from iron hyperabsorption can contribute to osteoporosis as found in several diseases, including hemochromatosis and thalassemia. Previous studies in thalassemic mice showed the positive effects of the iron uptake suppressor, hepcidin, on calcium transport. However, whether this effect could be replicated in other conditions is not known. Therefore, this study aimed to investigate the effects of hepcidin on iron and calcium uptake ability under physiological, iron uptake stimulation and calcium uptake suppression. To investigate the potential mechanism, effects of hepcidin on the expression of iron and calcium transporter and transport-associated protein in Caco-2 cells were also determined. Our results showed that intestinal cell iron uptake was significantly increased by ascorbic acid together with ferric ammonium citrate (FAC), but this phenomenon was suppressed by hepcidin. Interestingly, hepcidin significantly increased calcium uptake under physiological condition but not under iron uptake stimulation. While hepcidin significantly suppressed the expression of iron transporter, it had no effect on calcium transporter expression. This indicated that hepcidin-induced intestinal cell calcium uptake did not occur through the stimulation of calcium transporter expression. On the other hand, 1,25(OH)2D3 effectively induced intestinal cell calcium uptake, but it did not affect intestinal cell iron uptake or iron transporter expression. The 1,25(OH)2D3-induced intestinal cell calcium uptake was abolished by 12 mM CaCl2; however, hepcidin could not rescue intestinal cell calcium uptake suppression by CaCl2. Taken together, our results showed that hepcidin could effectively and concurrently induce intestinal cell calcium uptake while reducing intestinal cell iron uptake under physiological and iron uptake stimulation conditions, suggesting its therapeutic potential for inactive calcium absorption, particularly in thalassemic patients or patients who did not adequately respond to 1,25(OH)2D3.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Leroy C. Joseph ◽  
Michael V. Reyes ◽  
Edwin A. Homan ◽  
Blake Gowen ◽  
Uma Mahesh R. Avula ◽  
...  

AbstractObesity and diabetes increase the risk of arrhythmia and sudden cardiac death. However, the molecular mechanisms of arrhythmia caused by metabolic abnormalities are not well understood. We hypothesized that mitochondrial dysfunction caused by high fat diet (HFD) promotes ventricular arrhythmia. Based on our previous work showing that saturated fat causes calcium handling abnormalities in cardiomyocytes, we hypothesized that mitochondrial calcium uptake contributes to HFD-induced mitochondrial dysfunction and arrhythmic events. For experiments, we used mice with conditional cardiac-specific deletion of the mitochondrial calcium uniporter (Mcu), which is required for mitochondrial calcium uptake, and littermate controls. Mice were used for in vivo heart rhythm monitoring, perfused heart experiments, and isolated cardiomyocyte experiments. MCU KO mice are protected from HFD-induced long QT, inducible ventricular tachycardia, and abnormal ventricular repolarization. Abnormal repolarization may be due, at least in part, to a reduction in protein levels of voltage gated potassium channels. Furthermore, isolated cardiomyocytes from MCU KO mice exposed to saturated fat are protected from increased reactive oxygen species (ROS), mitochondrial dysfunction, and abnormal calcium handling. Activation of calmodulin-dependent protein kinase (CaMKII) corresponds with the increase in arrhythmias in vivo. Additional experiments showed that CaMKII inhibition protects cardiomyocytes from the mitochondrial dysfunction caused by saturated fat. Hearts from transgenic CaMKII inhibitor mice were protected from inducible ventricular tachycardia after HFD. These studies identify mitochondrial dysfunction caused by calcium overload as a key mechanism of arrhythmia during HFD. This work indicates that MCU and CaMKII could be therapeutic targets for arrhythmia caused by metabolic abnormalities.


Sign in / Sign up

Export Citation Format

Share Document