oxide synthase
Recently Published Documents


TOTAL DOCUMENTS

20978
(FIVE YEARS 1359)

H-INDEX

264
(FIVE YEARS 13)

2022 ◽  
Vol 195 ◽  
pp. 113051
Author(s):  
Yana Y. Toporkova ◽  
Elena K. Askarova ◽  
Svetlana S. Gorina ◽  
Lucia S. Mukhtarova ◽  
Alexander N. Grechkin

2022 ◽  
Author(s):  
Md. Mamun Al-Amin ◽  
Robert K P Sullivan ◽  
Suzanne Alexander ◽  
David A Carter ◽  
Dana Bradford ◽  
...  

Vitamin D deficiency is prevalent in adults and is associated with cognitive impairment. However, the mechanism by which adult vitamin D (AVD) deficiency affects cognitive function remains unclear. We examined spatial memory impairment in AVD-deficient BALB/c mice and its underlying mechanism by measuring spine density, long term potentiation (LTP), nitric oxide (NO), neuronal nitric oxide synthase (nNOS) and endothelial NOS (eNOS) in the hippocampus. Adult male BALB/c mice were fed a control or vitamin D deficient diet for 20 weeks. Spatial memory performance was measured using an active place avoidance (APA) task, where AVD-deficient mice had reduced latency entering the shock zone compared to controls. We characterised hippocampal spine morphology in the CA1 and dentate gyrus (DG) and made electrophysiological recordings in the hippocampus of behaviourally naive mice to measure LTP. We next measured NO, as well as glutathione, lipid peroxidation and oxidation of protein products and quantified hippocampal immunoreactivity for nNOS and eNOS. Spine morphology analysis revealed a significant reduction in the number of mushroom spines in the CA1 dendrites but not in the DG. There was no effect of diet on LTP. However, hippocampal NO levels were depleted whereas other oxidation markers were unaltered by AVD deficiency. We also showed a reduced nNOS, but not eNOS, immunoreactivity. Finally, vitamin D supplementation for 10 weeks to AVD-deficient mice restored nNOS immunoreactivity to that seen in in control mice. Our results suggest that lower levels of NO, reduced nNOS immunostaining contribute to hippocampal-dependent spatial learning deficits in AVD-deficient mice.


2022 ◽  
Vol 29 ◽  
Author(s):  
Pratik Shukla ◽  
Keval Chopda ◽  
Amar Sakure ◽  
Subrota Hati

Abstract: Food derived Antihypertensive peptides is considered as a natural supplement for controlling the hypertension. Food protein not only serve as a macronutrient but also act as raw material for biosynthesis of physiologically active peptides. Food sources like milk and milk products, animal protein such as meat, chicken, fish, eggs and plant derived proteins from soy, rice, wheat, mushroom, pumpkins contain high amount of antihypertensive peptides. The food derived antihypertensive peptides has ability to supress the action of rennin and Angiotesin converting enzyme (ACE) which is mainly involved in regulation of blood pressure by RAS. The biosynthesis of endothelial nitric oxide synthase is also improved by ACE inhibitory peptides which increase the production of nitric oxide in vascular walls and encourage vasodilation. Interaction between the angiotensin II and its receptor is also inhibited by the peptides which help to reduce hypertension. This review will explore the novel sources and applications of food derived peptides for the management of hypertension.


Author(s):  
Xiaoyun Wu ◽  
Ziwei Hu ◽  
Junjie Zhou ◽  
Jin Liu ◽  
Ping Ren ◽  
...  

Abstract The benefits and risks of inhibiting the proliferation and migration of vascular smooth muscle cells (VSMCs) in atherosclerosis (AS) remain a subject of debate. In this study, we investigated the effect of ferulic acid (FA) on the proliferation and migration of VSMCs induced by platelet-derived growth factor (PDGF) and the associated mechanism and used ApoE-/- mice to study whether the effect of FA on VSMC proliferation and migration is beneficial in alleviating AS plaques. It was found that FA not only reduced blood lipid levels but also promoted the production of nitric oxide (NO) by MOVAS cells through the endothelial nitric oxide synthase (eNOS) pathway, inhibited the migration and proliferation of VSMCs induced by PDGF, promoted the expression of p21 in VSMCs, and exerted a therapeutic effect against AS.


2022 ◽  
Author(s):  
SANTOSH SINGH ◽  
Arghya Mukherjee ◽  
Deepika Jeswani

Abstract Acute liver failure (ALF) is a complication of severe liver dysfunction resulting from a wide range of factors including alcoholism, drug-abuse, improper medication, viral hepatitis etc., and present with high mortality rate among the human population. ALF led hyperammonemia (HA) induced cerebral dysfunction is considered to be the main cause of death in patients, however, the precise molecular mechanism is not completely understood. The aim of this study was to investigate the status of brain edema and modulation of N-methyl D-aspartate receptors (NMDAR)- Nitric oxide synthase (NOS)- Nitric oxide (NO)- cyclic guanosine monophosphate (cGMP) axis in the cerebral cortex and cerebellum of ALF rats. ALF was induced by intraperitoneal (IP) injection of thioacetamide (TAA). We observed significantly increased brain water content in ALF rats but absence of astrocytes swelling suggested induction of vasogenic edema. Except constant NR2B, down regulation of NR2A, 2C and 2D subunits containing NMDAR genes in cerebral cortex, however, constant NR2A-C but up-regulation of NR2D subunit in cerebellum suggested brain regions specific differential regulation of NMDAR in ALF rats. Significantly increased nNOS gene and protein level were found to be accompanied by the significantly increased level of NO and cGMP in both brain tissues; however, increased eNOS expression in cortex but increased iNOS expression and activity in cerebellum were observed in ALF rats. Together these findings suggested that ALF in rats may trigger differential regulation of NR2A-D subunits containing NMDAR, induction of NOS-NO-cGMP axis and vasogenic edema in cerebral cortex and cerebellum.


Plant Disease ◽  
2022 ◽  
Author(s):  
Marlon C. de Borba ◽  
Aline Cristina Velho ◽  
Mateus B. de Freitas ◽  
Maxime Holvoet ◽  
Alessandra Maia-Grondard ◽  
...  

The present study aimed to evaluate the potential of the laminarin-based formulation Vacciplant® to protect and induce resistance in wheat against Zymoseptoria tritici, a major pathogen on this crop. Under greenhouse conditions, a single foliar spraying of the product two days before inoculation with Z. tritici reduced disease severity and pycnidium density by 42% and 45%, respectively. Vacciplant® exhibited a direct antifungal activity on Z. tritici conidial germination both in vitro and in planta. Moreover, it reduced in planta substomatal colonization as well as pycnidium formation on treated leaves. Molecular investigations revealed that Vacciplant® elicits but did not prime the expression of several wheat genes related to defense pathways, including phenylpropanoids (phenylalanine ammonia-lyase and chalcone synthase), octadecanoids (lipoxygenase and allene oxide synthase), and pathogenesis‐related proteins (β‐1,3‐endoglucanase and chitinase). By contrast, it did not modulate the expression of oxalate oxidase gene involved in the reactive oxygen species metabolism. UHPLC-MS analysis indicated limited changes in leaf metabolome after product application in both non-inoculated and inoculated conditions, suggesting a low metabolic cost associated with induction of plant resistance. This study provides evidence that the laminarin-based formulation confers protection to wheat against Z. tritici through direct antifungal activity and elicitation of plant defense-associated genes.


Sign in / Sign up

Export Citation Format

Share Document