rat cardiomyocytes
Recently Published Documents


TOTAL DOCUMENTS

1719
(FIVE YEARS 290)

H-INDEX

69
(FIVE YEARS 7)

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Bin Li ◽  
Xing Xie

Abstract Objective To investigate the effect of A20 and how A20 is regulated in viral myocarditis (VMC). Methods BABL/C mice, primary neonatal rat cardiomyocytes and H9c2 cells were infected with Coxsackie virus B3 (CVB3) to establish animal and cellular models of VMC. H&E staining revealed the pathologic condition of myocardium. ELISA measured the serum levels of creatine kinase, creatine kinase isoenzyme and cardiac troponin I. The effects of A20, miR-1a-3p and ADAR1 were investigated using gain and loss of function approaches. ELISA measured the levels of IL-6, IL-18 and TNF-α in serum or cell culture supernatant. TUNEL staining and flow cytometry assessed the apoptosis of myocardium and cardiomyocytes, respectively. RNA-binding protein immunoprecipitation and dual-luciferase reporter assays verified the binding between A20 and miR-1a-3p. Co-immunoprecipitation assay verified the binding between ADAR1 and Dicer. Results A20 was underexpressed and miR-1a-3p was overexpressed in the myocardium of VMC mice as well as in CVB3-infected cardiomyocytes. Overexpression of A20 suppressed cardiomyocyte inflammation and apoptosis in vivo and in vitro. miR-1a-3p promoted CVB3-induced inflammation and apoptosis in cardiomyocytes by binding to A20. The expression of miR-1a-3p was regulated by ADAR1. ADAR1 promoted the slicing of miR-1a-3p precursor by binding to Dicer. Conclusion A20, regulated by ADAR1/miR-1a-3p, suppresses inflammation and cardiomyocyte apoptosis in VMC.


2022 ◽  
Author(s):  
Nan Niu ◽  
Hui Li ◽  
Xiancai Du ◽  
Chan Wang ◽  
Junliang Li ◽  
...  

Abstract Hypoxia is a primary inducer of cardiomyocyte injury, its significant marker being hypoxia-induced cardiomyocyte apoptosis. Nuclear respiratory factor-1 (NRF-1) and hypoxia-inducible factor (HIF)-1α are transcriptional regulatory elements implicated in multiple biological functions, including oxidative stress response. However, their roles in hypoxia-induced cardiomyocyte apoptosis remain unknown. The effect HIF-α, together with NRF-1, exerts on cardiomyocyte apoptosis also remains unclear. We established a myocardial hypoxia model and investigated the effects of these proteins on the proliferation and apoptosis of rat cardiomyocytes (H9C2) under hypoxia. Further, we examined the association between NRF-1 and HIF-1α to improve the current understanding of NRF-1 anti-apoptotic mechanisms. The results showed that NRF-1 and HIF-1α are important anti-apoptotic molecules in H9C2 cells under hypoxia, although their regulatory mechanisms differ. NRF-1 could bind to the promoter region of Hif-1α and negatively regulate its expression. Additionally, HIF-1β exhibited competitive binding with NRF-1 and HIF-1α, demonstrating a synergism between NRF-1 and the peroxisome proliferator-activated receptor-gamma coactivator-1α. These results indicate that cardiomyocytes can regulate different molecular patterns to tolerate hypoxia, providing a novel methodological framework for studying cardiomyocyte apoptosis under hypoxia.


2021 ◽  
Author(s):  
Chenchen Hu ◽  
Xin Wei ◽  
Jinmin Liu ◽  
Linlin Han ◽  
Chengkun Xia ◽  
...  

Abstract Background: Abnormal myocardial expression and function of Nav1.5 causes lethal ventricular arrhythmias during myocardial ischemia-reperfusion (I/R). PIASy mediated Caveolin-3 (Cav-3) SUMO modification affects Cav-3 binding to ligand Nav1.5. PIASy activity is increased after myocardial I/R, whether or not this may be attributable to plasma membrane Nav1.5 downregulation and ventricular arrhythmias remains unclear. Methods: Using recombinant adeno-associated virus subtype 9 (AAV9), rat cardiac PIASy was silenced by intraventricular injection of PIASy shRNA. Two weeks later, the hearts were subjected to I/R, and electrocardiography was performed to assess malignant arrhythmias. Tissues from peri-infarct areas of the left ventricle were collected for molecular biological measurement. Results: We found that PIASy was upregulated by I/R, with increased SUMO2/3 modification of Cav-3, reduced membrane Nav1.5 density, and increased ventricular arrhythmia frequency. These effects were significantly reversed by PIASy silencing. In addition, PIASy silencing enhanced Cav-3 binding to Nav1.5 and prevented I/R-induced Nav1.5 re-localization. Using in vitro models of HEK293T cells and isolated adult rat cardiomyocytes exposed to hypoxia/reoxygenation (H/R), this reserch further confirmed that PIASy promoted Cav-3 modification by SUMO2/3 and Nav1.5/Cav-3 dissociation after H/R. Mutation of the SUMO Consensus Sites Lysine in Cav-3 (K38R or K144R) alters the membrane expression levels of Nav1.5 and Cav-3 before and after H/R in HEK293T cells. Conclusions: I/R-induced cardiac PIASy activation contributes to Cav-3 SUMOylation by SUMO2/3 and dysregulated Nav1.5- related ventricular arrhythmias. Cardiac-targeted PIASy gene silencing mediates deSUMOylation of Cav-3 and prevents I/R-induced Nav1.5 down-regulation and ventricular arrhythmias in rats, identifying PIASy as a potential therapeutic target for relevant life-threatening arrhythmias in patients with ischemic heart diseases.


2021 ◽  
Author(s):  
Chi Zhou ◽  
Zi-Mo Zhou ◽  
Ling Hu ◽  
Ya-Yuan Yang ◽  
Xiang-Wen Meng ◽  
...  

Abstract Purpose MicroRNAs (miRNAs) have been reported to play pivotal role in drugs-induced cardiotoxicity act as biomarkes, diagnostic tools and endogenous repressors of gene expression by lowering mRNA stability and interfering with mRNA translation. However, the effect of miRNAs on doxorubicin-induced cardiotoxicity still not clear. In the present study, we identified several key candidate miRNAs involving doxorubicin (DOX)-induced cardiotoxicity in rat myocardial tissues and adult rat cardiomyocytes from the Gene Expression Omnibus (GEO) database via integrated bioinformatics analysis, and the possible effect of miR-143 in the protection of DOX-induced cardiotoxicity by phosphocreatine was subsequently investigated in vivo and in vitro. Methods GSE36239 miRNA expression profiles of DOX-induced cardiotoxicity in rat myocardial tissues and adult rat cardiomyocytes (ARC) were extracted fromGEO datasets. |log2FC| > 1 and P < 0.05 were set as screening criteria, miRNAs expressed in myocardial tissues or ARC were selected as different expression miRNA (DEMs), and subsequently the key miRNAs were obtained from candidate DEMs between myocardial tissues and ARC with Venny 2.1 software. Target genes of miR-143 were predicted with Targetscan and miRBase in the species of homo sapiens, and candidate genes were obtained with Venny 2.1. The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses were carried out. Final, the expression and potential role of miR-143 were verified in DOX-induced cardiotoxicity of rat and cardiomyocytes H9c2. Results A total 24 DEMs were captured , including 15 up-regulated and 9 down-regulated genes in rat myocardial tissues and 42 DEMs were discovered, including 13 up-regulated and 29 down-regulated in ARC. Ultimately, 6 DEMs were determined in rat myocardial tissues and ARC by venny 2.1 software. 46 target genes of miR-143, one of the 6 DEMs, were captured from the predict results of Targetscan and miRBase with venny 2.1. The target genes were notably enriched in biological processes (BP) such as cell proliferation and migration. KEGG pathway analysis showed the target genes were enriched in HIF-1 and PI3K-Akt signaling pathway, which closely related to the oxidative stress and cardiomyocytes apoptosis. Further, western blot and RT-PCR results showed DOX-induced oxidative stress down-regulated the expression of miR-143 and Nrf2, SOD and BCL2, and up-regulated Bax and Cleaved caspase 3, while they could been reversed by the intervention of phosphocreatine (PCr) or N-acetyl-L-cystine (NAC) in DOX-induced cardiotoxicity in vivo and in vitro.Conclusion Our data showed that DOX-induced oxidative stress could decrease the expression of miR-143, promote apoptosis of cardiomyocytes, while PCr or NAC mediated antioxidation could reverse the expression down-regulation of miR-143, alleviated apoptosis in DOX-induced cardiotoxicity. Our findings elucidated the regulatory network involving miR-143 in DOX-induced cardiotoxicity, and might unveiled a potential biomarker and molecular mechanisms, which could be helpful to the diagnosis and treatment of DOX-induced cardiotoxicity.


2021 ◽  
Author(s):  
Nan Niu ◽  
Hui Li ◽  
Xiancai Du ◽  
Chan Wang ◽  
Junliang Li ◽  
...  

Abstract Hypoxia is a primary inducer of cardiomyocyte injury, its significant marker being hypoxia-induced cardiomyocyte apoptosis. Nuclear respiratory factor-1 (NRF-1) and hypoxia-inducible factor (HIF)-1α are transcriptional regulatory elements implicated in multiple biological functions, including oxidative stress response. However, their roles in hypoxia-induced cardiomyocyte apoptosis remain unknown. The effect HIF-α, together with NRF-1, exerts on cardiomyocyte apoptosis also remains unclear. We established a myocardial hypoxia model and investigated the effects of these proteins on the proliferation and apoptosis of rat cardiomyocytes (H9C2) under hypoxia. Further, we examined the association between NRF-1 and HIF-1α to improve the current understanding of NRF-1 anti-apoptotic mechanisms. The results showed that NRF-1 and HIF-1α are important anti-apoptotic molecules in H9C2 cells under hypoxia, although their regulatory mechanisms differ. NRF-1 could bind to the promoter region of Hif-1α and negatively regulate its expression. Additionally, HIF-1β exhibited competitive binding with NRF-1 and HIF-1α, demonstrating a synergism between NRF-1 and the peroxisome proliferator-activated receptor-gamma coactivator-1α. These results indicate that cardiomyocytes can regulate different molecular patterns to tolerate hypoxia, providing a novel methodological framework for studying cardiomyocyte apoptosis under hypoxia.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Guofeng Wang ◽  
Qi Wang ◽  
Weixue Xu

Objective. To investigate the effects of HOX transcript antisense RNA (HOTAIR) and miR-138 on inflammatory response and oxidative stress (OS) induced by IRI in rat cardiomyocytes. Methods. H9C2 cells were divided into the control group, H/R group, H/R+siRNA NC group, H/R+si-HOTAIR group, and H/R+si-HOTAIR+inhibitor group. Expression levels of HOTAIR, miR-138, and inflammatory factors were detected by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). The double luciferase reporter gene assay was used to detect the targeting relationship between HOTAIR and miR-138. Results. Compared with the control group, the level of miR-138 and SOD in the H/R group was obviously reduced, while the expression levels of the HOTAIR, MDA, and NF-κB pathway were obviously increased. Compared with the H/R group, the level of miR-138 and SOD in the H/R+si-HOTAIR group was obviously increased, and the expression levels of the HOTAIR, MDA, and NF-κB pathway were obviously decreased. Compared with the H/R+si-HOTAIR group, the level of SOD in the H/R+si-HOTAIR+inhibitor group decreased; MDA content and the NF-κB pathway expression level increased. In the double luciferase reporter gene assay, compared with the HOTAIR wt+NC group, the luciferase activity of the HOTAIR wt+miR-138 mimic group was obviously decreased. Conclusions. Silent HOTAIR can promote the expression of miR-138 and inhibit H/R-induced inflammatory response and OS by regulating the NF-κB pathway, thus protecting cardiomyocytes.


Author(s):  
Katja Grabowski ◽  
Laura Herlan ◽  
Anika Witten ◽  
Fatimunnisa Qadri ◽  
Andreas Eisenreich ◽  
...  

AbstractTreatment of hypertension-mediated cardiac damage with left ventricular (LV) hypertrophy (LVH) and heart failure remains challenging. To identify novel targets, we performed comparative transcriptome analysis between genetic models derived from stroke-prone spontaneously hypertensive rats (SHRSP). Here, we identified carboxypeptidase X 2 (Cpxm2) as a genetic locus affecting LV mass. Analysis of isolated rat cardiomyocytes and cardiofibroblasts indicated Cpxm2 expression and intrinsic upregulation in genetic hypertension. Immunostaining indicated that CPXM2 associates with the t-tubule network of cardiomyocytes. The functional role of Cpxm2 was further investigated in Cpxm2-deficient (KO) and wild-type (WT) mice exposed to deoxycorticosterone acetate (DOCA). WT and KO animals developed severe and similar systolic hypertension in response to DOCA. WT mice developed severe LV damage, including increases in LV masses and diameters, impairment of LV systolic and diastolic function and reduced ejection fraction. These changes were significantly ameliorated or even normalized (i.e., ejection fraction) in KO-DOCA animals. LV transcriptome analysis showed a molecular cardiac hypertrophy/remodeling signature in WT but not KO mice with significant upregulation of 1234 transcripts, including Cpxm2, in response to DOCA. Analysis of endomyocardial biopsies from patients with cardiac hypertrophy indicated significant upregulation of CPXM2 expression. These data support further translational investigation of CPXM2.


Sign in / Sign up

Export Citation Format

Share Document