Sclareol modulates free radical production in the retinal rod outer segment by inhibiting the ectopic f1fo-atp synthase

2020 ◽  
Vol 160 ◽  
pp. 368-375 ◽  
Author(s):  
Silvia Ravera ◽  
Alfonso Esposito ◽  
Paolo Degan ◽  
Federico Caicci ◽  
Daniela Calzia ◽  
...  
Antioxidants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1133
Author(s):  
Silvia Ravera ◽  
Federico Caicci ◽  
Paolo Degan ◽  
Davide Maggi ◽  
Lucia Manni ◽  
...  

Rod outer segments (OS) express the FoF1-ATP synthase and the respiratory chain, conducting an ectopic aerobic metabolism that produces free radicals in vitro. Diabetic retinopathy, a leading cause of vision loss, is associated with oxidative stress in the outer retina. Since metformin and glibenclamide, two anti-type 2 diabetes drugs, target the respiratory complexes, we studied the effect of these two drugs, individually or in association, on the free radical production in purified bovine rod OS. ATP synthesis, oxygen consumption, and oxidative stress production were assayed by luminometry, oximetry and flow cytometry, respectively. The expression of FoF1-ATP synthase was studied by immunogold electron microscopy. Metformin had a hormetic effect on the OS complex I and ATP synthetic activities, being stimulatory at concentrations below 1 mM, and inhibitory above. Glibenclamide inhibited complexes I and III, as well as ATP production in a concentration-dependent manner. Maximal concentrations of both drugs inhibited the ROI production by the light-exposed OS. Data, consistent with the delaying effect of these drugs on the onset of diabetic retinopathy, suggest that a combination of the two drugs at the beginning of the treatment might reduce the oxidative stress production helping the endogenous antioxidant defences in avoiding retinal damage.


Diabetes ◽  
1984 ◽  
Vol 33 (2) ◽  
pp. 160-163 ◽  
Author(s):  
K. Asayama ◽  
D. English ◽  
A. E. Slonim ◽  
I. M. Burr

2020 ◽  
Vol 24 (1) ◽  
pp. 39-44
Author(s):  
E. V. Smirnova ◽  
E. V. Proskurnina ◽  
T. N. Krasnova

BACKGROUND. Oxidative status impairment plays a significant role in the pathogenesis of SLE and lupus nephritis (LN). The data about oxidative status in this disease are incomplete, that’s why it’s necessary to use a new approach to study it. THE AIM: To study oxidative status in SLE patients with kidney involvement. PATIENTS AND METHODS:53 patients with SLE were included in this prospective study, among them 40 patients with different severity of kidney involvement, control group were 87 healthy donors. Oxidative stress parameters were measured: antioxidant activity (AOA) of blood plasma and parameters, characterizing the state of the main source of reactive oxygen species (ROS) – neutrophils, more specifically: specific spontaneous neutrophil activity, specific stimulated activity (peak and integral), coefficient of respiratory burst attenuation, representing the rate of free radical production decrease after stimulation, the higher the value of this parameter, the slower is free radical production decrease. RESULTS. It was shown elevation of neutrophil free radical-producing activity parameters and elevation of blood plasma AOA in patients with LN, comparing to healthy controls. Immunosuppressive therapy with glucocorticosteroids (GCS) and cytostatics (CS) increased blood plasma AOA comparing to monotherapy with GCS. A correlation between oxidative status impairment and intensity of inflammatory reactions was found: correlation of respiratory burst attenuation coefficient with blood sedimentation rate was shown. Reduction of spontaneous free radical-producing neutrophil activity was found in LN patients with NS, which might be the result of neutrophil functional activity attenuation in high disease activity. CONCLUSION. The increased free radical-producing neutrophil activity was shown, which might be the cause of oxidative stress in SLE with LN. It seems warranted investigation of these parameters in samples of larger volume to search targets aimed at neutrophils. The necessity of antioxidant therapy in patients with SLE seems doubtful, as they show significant increase of blood plasma AOA, which might result from compensatory reaction of human organism to oxidative stress and therapy with GCS and CS.


1992 ◽  
Vol 55 ◽  
pp. 248
Author(s):  
H. Zhang ◽  
E. Agardh ◽  
C-D. Agardh

Glia ◽  
2004 ◽  
Vol 46 (3) ◽  
pp. 296-301 ◽  
Author(s):  
Arumugam R. Jayakumar ◽  
K.V. Rama Rao ◽  
Arne Schousboe ◽  
Michael D. Norenberg

1990 ◽  
pp. 139-145
Author(s):  
I. M. Pepe ◽  
I. Panfoli ◽  
C. Cugnoli

Sign in / Sign up

Export Citation Format

Share Document