fof1 atp synthase
Recently Published Documents


TOTAL DOCUMENTS

131
(FIVE YEARS 15)

H-INDEX

21
(FIVE YEARS 1)

Author(s):  
Yufu Unten ◽  
Masatoshi Murai ◽  
Katsuyuki Sakai ◽  
Yukihiro Asami ◽  
Takenori Yamamoto ◽  
...  

Abstract The mitochondrial machineries presiding over ATP synthesis via oxidative phosphorylation are promising druggable targets. Fusaramin, a 3-acyl tetramic acid isolated from Fusarium concentricum FKI-7550, is an inhibitor of oxidative phosphorylation in Saccharomyces cerevisiae mitochondria, although its target has yet to be identified. Fusaramin significantly interfered with [3H]ADP uptake by yeast mitochondria at the concentration range inhibiting oxidative phosphorylation. A photoreactive fusaramin derivative (pFS-5) specifically labeled voltage-dependent anion channel 1 (VDAC1), which facilitates trafficking of ADP/ATP across the outer mitochondrial membrane. These results strongly suggest that the inhibition of oxidative phosphorylation by fusaramin is predominantly attributable to the impairment of VDAC1 functions. Fusaramin also inhibited FoF1-ATP synthase and ubiquinol-cytochrome c oxidoreductase (complex III) at concentrations higher than those required for the VDAC inhibition. Considering that other tetramic acid derivatives are reported to inhibit FoF1-ATP synthase and complex III, natural tetramic acids were found to elicit multiple inhibitory actions against mitochondrial machineries.


2021 ◽  
pp. 101027
Author(s):  
Kumiko Kondo ◽  
Masayuki Izumi ◽  
Kosuke Inabe ◽  
Keisuke Yoshida ◽  
Mari Imashimizu ◽  
...  

2021 ◽  
Vol 1862 (4) ◽  
pp. 148369
Author(s):  
Ruizheng Hou ◽  
Zhisong Wang

2021 ◽  
Author(s):  
Noriyo Mitome ◽  
Shintaroh Kubo ◽  
Sumie Ohta ◽  
Hikaru Takashima ◽  
Yuto Shigefuji ◽  
...  

In FoF1-ATP synthase, proton translocation through Fo drives rotation of the c-subunit oligomeric ring relative to the a-subunit. Recent studies suggest that in each step of the rotation, key glutamic acid residues in different c-subunits contribute to proton release to and proton uptake from the a-subunit. However, no studies have demonstrated cooperativity among c-subunits toward FoF1-ATP synthase activity. Here, we addressed this using Bacillus PS3 ATP synthase harboring c-ring with various combinations of wild-type and cE56D, enabled by genetically fused single-chain c-ring. ATP synthesis and proton pump activities were significantly decreased by a single cE56D mutation and further decreased by double cE56D mutations. Moreover, activity further decreased as the two mutation sites were separated, indicating cooperation among c-subunits. Similar results were obtained for proton transfer-coupled molecular simulations. Simulations revealed that prolonged proton uptake in mutated c-subunits is shared between two c-subunits, explaining the cooperation observed in biochemical assays.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anja Steudle ◽  
Dirk Spann ◽  
Eva Pross ◽  
Sri Karthika Shanmugam ◽  
Ross E. Dalbey ◽  
...  

AbstractThe membrane insertase YidC inserts newly synthesized proteins by its hydrophobic slide consisting of the two transmembrane (TM) segments TM3 and TM5. Mutations in this part of the protein affect the insertion of the client proteins. We show here that a quintuple mutation, termed YidC-5S, inhibits the insertion of the subunit a of the FoF1 ATP synthase but has no effect on the insertion of the Sec-independent M13 procoat protein and the C-tail protein SciP. Further investigations show that the interaction of YidC-5S with SecY is inhibited. The purified and fluorescently labeled YidC-5S did not approach SecYEG when both were co-reconstituted in proteoliposomes in contrast to the co-reconstituted YidC wild type. These results suggest that TM3 and TM5 are involved in the formation of a common YidC-SecYEG complex that is required for the insertion of Sec/YidC-dependent client proteins.


2021 ◽  
pp. 100357
Author(s):  
Carolina Hierro-Yap ◽  
Karolína Šubrtová ◽  
Ondřej Gahura ◽  
Brian Panicucci ◽  
Caroline Dewar ◽  
...  

Antioxidants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1133
Author(s):  
Silvia Ravera ◽  
Federico Caicci ◽  
Paolo Degan ◽  
Davide Maggi ◽  
Lucia Manni ◽  
...  

Rod outer segments (OS) express the FoF1-ATP synthase and the respiratory chain, conducting an ectopic aerobic metabolism that produces free radicals in vitro. Diabetic retinopathy, a leading cause of vision loss, is associated with oxidative stress in the outer retina. Since metformin and glibenclamide, two anti-type 2 diabetes drugs, target the respiratory complexes, we studied the effect of these two drugs, individually or in association, on the free radical production in purified bovine rod OS. ATP synthesis, oxygen consumption, and oxidative stress production were assayed by luminometry, oximetry and flow cytometry, respectively. The expression of FoF1-ATP synthase was studied by immunogold electron microscopy. Metformin had a hormetic effect on the OS complex I and ATP synthetic activities, being stimulatory at concentrations below 1 mM, and inhibitory above. Glibenclamide inhibited complexes I and III, as well as ATP production in a concentration-dependent manner. Maximal concentrations of both drugs inhibited the ROI production by the light-exposed OS. Data, consistent with the delaying effect of these drugs on the onset of diabetic retinopathy, suggest that a combination of the two drugs at the beginning of the treatment might reduce the oxidative stress production helping the endogenous antioxidant defences in avoiding retinal damage.


Sign in / Sign up

Export Citation Format

Share Document