scholarly journals Theoretical estimates of equilibrium carbon and hydrogen isotope effects in microbial methane production and anaerobic oxidation of methane

Author(s):  
Jonathan Gropp ◽  
Mark A. Iron ◽  
Itay Halevy
2020 ◽  
Author(s):  
Jonathan Gropp ◽  
Mark Iron ◽  
Itay Halevy

Microbial production and consumption of methane are widespread in natural and artificial environments, with important economic and climatic implications. Attempts to use the isotopic composition of methane to constrain its sources are complicated by incomplete understanding of the mechanisms of variation in methane's isotopic composition. Knowledge of the equilibrium isotope fractionations among the large organic intracellular intermediates in the microbial pathways of methane production and consumption must form the basis of any exploration of the mechanisms of isotopic variation, but estimates of these equilibrium isotope fractionations are currently unavailable. To address this gap, we calculated the equilibrium isotopic fractionation of carbon (<sup>13</sup>C/<sup>12</sup>C) and hydrogen (D/H) isotopes among compounds in anaerobic methane metabolisms, as well as the abundance of multiple isotope substitutions ("clumping," e.g., <sup>13</sup>C--D) in these compounds. The Density Functional Theory calculations employed the M06-L/def2-TZVP level of theory and the SMD implicit solvation model, which we have recently optimized for large organic molecules and tested against measured equilibrium isotope fractionations. The computed <sup>13</sup>beta and <sup>2</sup>beta values decrease with decreasing average oxidation state of the carbon atom in the molecules, resulting in a preference for enrichment of the molecules with more oxidized carbon in <sup>13</sup>C and D. Using the computed $\beta$ values, we calculated the equilibrium isotope fractionation factors in the prominent methanogenesis pathways (hydrogenotrophic, methylotrophic and acetoclastic) and in the pathway for anaerobic oxidation of methane (AOM) over a temperature range of 0-700 degrees Celsius. Our calculated equilibrium fractionation factors compare favorably with experimental constrains, where available, and we used them to investigate the relation between the apparent isotope fractionation during methanogenesis and AOM and the thermodynamic drive for these reactions. We show that a detailed map of the equilibrium fractionation factors along these metabolic pathways allows an evaluation of the contribution of equilibrium and kinetic isotope effects to apparent isotope fractionations observed in laboratory, natural and artificial settings. The comprehensive set of equilibrium isotope fractionation factors calculated in this study provides a firm basis for future explorations of isotope effects in methane metabolism.


2020 ◽  
Author(s):  
Jonathan Gropp ◽  
Mark Iron ◽  
Itay Halevy

Microbial production and consumption of methane are widespread in natural and artificial environments, with important economic and climatic implications. Attempts to use the isotopic composition of methane to constrain its sources are complicated by incomplete understanding of the mechanisms of variation in methane's isotopic composition. Knowledge of the equilibrium isotope fractionations among the large organic intracellular intermediates in the microbial pathways of methane production and consumption must form the basis of any exploration of the mechanisms of isotopic variation, but estimates of these equilibrium isotope fractionations are currently unavailable. To address this gap, we calculated the equilibrium isotopic fractionation of carbon (<sup>13</sup>C/<sup>12</sup>C) and hydrogen (D/H) isotopes among compounds in anaerobic methane metabolisms, as well as the abundance of multiple isotope substitutions ("clumping," e.g., <sup>13</sup>C--D) in these compounds. The Density Functional Theory calculations employed the M06-L/def2-TZVP level of theory and the SMD implicit solvation model, which we have recently optimized for large organic molecules and tested against measured equilibrium isotope fractionations. The computed <sup>13</sup>beta and <sup>2</sup>beta values decrease with decreasing average oxidation state of the carbon atom in the molecules, resulting in a preference for enrichment of the molecules with more oxidized carbon in <sup>13</sup>C and D. Using the computed $\beta$ values, we calculated the equilibrium isotope fractionation factors in the prominent methanogenesis pathways (hydrogenotrophic, methylotrophic and acetoclastic) and in the pathway for anaerobic oxidation of methane (AOM) over a temperature range of 0-700 degrees Celsius. Our calculated equilibrium fractionation factors compare favorably with experimental constrains, where available, and we used them to investigate the relation between the apparent isotope fractionation during methanogenesis and AOM and the thermodynamic drive for these reactions. We show that a detailed map of the equilibrium fractionation factors along these metabolic pathways allows an evaluation of the contribution of equilibrium and kinetic isotope effects to apparent isotope fractionations observed in laboratory, natural and artificial settings. The comprehensive set of equilibrium isotope fractionation factors calculated in this study provides a firm basis for future explorations of isotope effects in methane metabolism.


2020 ◽  
Author(s):  
Jonathan Gropp ◽  
Mark Iron ◽  
Itay Halevy

Microbial production and consumption of methane are widespread in natural and artificial environments, with important economic and climatic implications. Attempts to use the isotopic composition of methane to constrain its sources are complicated by incomplete understanding of the mechanisms of variation in methane's isotopic composition. Knowledge of the equilibrium isotope fractionations among the large organic intracellular intermediates in the microbial pathways of methane production and consumption must form the basis of any exploration of the mechanisms of isotopic variation, but estimates of these equilibrium isotope fractionations are currently unavailable. To address this gap, we calculated the equilibrium isotopic fractionation of carbon (<sup>13</sup>C/<sup>12</sup>C) and hydrogen (D/H) isotopes among compounds in anaerobic methane metabolisms, as well as the abundance of multiple isotope substitutions ("clumping," e.g., <sup>13</sup>C--D) in these compounds. The Density Functional Theory calculations employed the M06-L/def2-TZVP level of theory and the SMD implicit solvation model, which we have recently optimized for large organic molecules and tested against measured equilibrium isotope fractionations. The computed <sup>13</sup>beta and <sup>2</sup>beta values decrease with decreasing average oxidation state of the carbon atom in the molecules, resulting in a preference for enrichment of the molecules with more oxidized carbon in <sup>13</sup>C and D. Using the computed $\beta$ values, we calculated the equilibrium isotope fractionation factors in the prominent methanogenesis pathways (hydrogenotrophic, methylotrophic and acetoclastic) and in the pathway for anaerobic oxidation of methane (AOM) over a temperature range of 0-700 degrees Celsius. Our calculated equilibrium fractionation factors compare favorably with experimental constrains, where available, and we used them to investigate the relation between the apparent isotope fractionation during methanogenesis and AOM and the thermodynamic drive for these reactions. We show that a detailed map of the equilibrium fractionation factors along these metabolic pathways allows an evaluation of the contribution of equilibrium and kinetic isotope effects to apparent isotope fractionations observed in laboratory, natural and artificial settings. The comprehensive set of equilibrium isotope fractionation factors calculated in this study provides a firm basis for future explorations of isotope effects in methane metabolism.


2020 ◽  
Author(s):  
Jonathan Gropp ◽  
Mark Iron ◽  
Itay Halevy

Microbial production and consumption of methane are widespread in natural and artificial environments, with important economic and climatic implications. Attempts to use the isotopic composition of methane to constrain its sources are complicated by incomplete understanding of the mechanisms of variation in methane's isotopic composition. Knowledge of the equilibrium isotope fractionations among the large organic intracellular intermediates in the microbial pathways of methane production and consumption must form the basis of any exploration of the mechanisms of isotopic variation, but estimates of these equilibrium isotope fractionations are currently unavailable. To address this gap, we calculated the equilibrium isotopic fractionation of carbon (<sup>13</sup>C/<sup>12</sup>C) and hydrogen (D/H) isotopes among compounds in anaerobic methane metabolisms, as well as the abundance of multiple isotope substitutions ("clumping," e.g., <sup>13</sup>C--D) in these compounds. The Density Functional Theory calculations employed the M06-L/def2-TZVP level of theory and the SMD implicit solvation model, which we have recently optimized for large organic molecules and tested against measured equilibrium isotope fractionations. The computed <sup>13</sup>beta and <sup>2</sup>beta values decrease with decreasing average oxidation state of the carbon atom in the molecules, resulting in a preference for enrichment of the molecules with more oxidized carbon in <sup>13</sup>C and D. Using the computed $\beta$ values, we calculated the equilibrium isotope fractionation factors in the prominent methanogenesis pathways (hydrogenotrophic, methylotrophic and acetoclastic) and in the pathway for anaerobic oxidation of methane (AOM) over a temperature range of 0-700 degrees Celsius. Our calculated equilibrium fractionation factors compare favorably with experimental constrains, where available, and we used them to investigate the relation between the apparent isotope fractionation during methanogenesis and AOM and the thermodynamic drive for these reactions. We show that a detailed map of the equilibrium fractionation factors along these metabolic pathways allows an evaluation of the contribution of equilibrium and kinetic isotope effects to apparent isotope fractionations observed in laboratory, natural and artificial settings. The comprehensive set of equilibrium isotope fractionation factors calculated in this study provides a firm basis for future explorations of isotope effects in methane metabolism.


2021 ◽  
Vol 194 ◽  
pp. 116928
Author(s):  
Wen-Bo Nie ◽  
Jie Ding ◽  
Guo-Jun Xie ◽  
Xin Tan ◽  
Yang Lu ◽  
...  

Solid Earth ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 1541-1554 ◽  
Author(s):  
Christian Stranne ◽  
Matt O'Regan ◽  
Martin Jakobsson ◽  
Volker Brüchert ◽  
Marcelo Ketzer

Abstract. Assessments of future climate-warming-induced seafloor methane (CH4) release rarely include anaerobic oxidation of methane (AOM) within the sediments. Considering that more than 90 % of the CH4 produced in ocean sediments today is consumed by AOM, this may result in substantial overestimations of future seafloor CH4 release. Here, we integrate a fully coupled AOM module with a numerical hydrate model to investigate under what conditions rapid release of CH4 can bypass AOM and result in significant fluxes to the ocean and atmosphere. We run a number of different model simulations for different permeabilities and maximum AOM rates. In all simulations, a future climate warming scenario is simulated by imposing a linear seafloor temperature increase of 3 ∘C over the first 100 years. The results presented in this study should be seen as a first step towards understanding AOM dynamics in relation to climate change and hydrate dissociation. Although the model is somewhat poorly constrained, our results indicate that vertical CH4 migration through hydraulic fractures can result in low AOM efficiencies. Fracture flow is the predicted mode of methane transport under warming-induced dissociation of hydrates on upper continental slopes. Therefore, in a future climate warming scenario, AOM might not significantly reduce methane release from marine sediments.


Sign in / Sign up

Export Citation Format

Share Document