Every choice correspondence is backwards-induction rationalizable

2014 ◽  
Vol 88 ◽  
pp. 207-210 ◽  
Author(s):  
John Rehbeck
2021 ◽  
Author(s):  
Christian Basteck

AbstractWe characterize voting procedures according to the social choice correspondence they implement when voters cast ballots strategically, applying iteratively undominated strategies. In elections with three candidates, the Borda Rule is the unique positional scoring rule that satisfies unanimity (U) (i.e., elects a candidate whenever it is unanimously preferred) and is majoritarian after eliminating a worst candidate (MEW)(i.e., if there is a unanimously disliked candidate, the majority-preferred among the other two is elected). In a larger class of rules, Approval Voting is characterized by a single axiom that implies both U and MEW but is weaker than Condorcet-consistency (CON)—it is the only direct mechanism scoring rule that is majoritarian after eliminating a Pareto-dominated candidate (MEPD)(i.e., if there is a Pareto-dominated candidate, the majority-preferred among the other two is elected); among all finite scoring rules that satisfy MEPD, Approval Voting is the most decisive. However, it fails a desirable monotonicity property: a candidate that is elected for some preference profile, may lose the election once she gains further in popularity. In contrast, the Borda Rule is the unique direct mechanism scoring rule that satisfies U, MEW and monotonicity (MON). There exists no direct mechanism scoring rule that satisfies both MEPD and MON and no finite scoring rule satisfying CON.


1996 ◽  
Vol 15 (1) ◽  
pp. 27-32 ◽  
Author(s):  
Jacob Glazer ◽  
Motty Perry
Keyword(s):  

Analysis ◽  
1999 ◽  
Vol 59 (4) ◽  
pp. 237-242 ◽  
Author(s):  
J. Broome ◽  
W. Rabinowicz
Keyword(s):  

1996 ◽  
Vol 33 (03) ◽  
pp. 630-639 ◽  
Author(s):  
M. P. Quine ◽  
J. S. Law

We consider the following secretary problem: items ranked from 1 to n are randomly selected without replacement, one at a time, and to ‘win' is to stop at an item whose overall rank is less than or equal to s, given only the relative ranks of the items drawn so far. Our method of analysis is based on the existence of an imbedded Markov chain and uses the technique of backwards induction. In principal the approach can be used to give exact results for any value of s; we do the working for s = 3. We give exact results for the optimal strategy, the probability of success and the distribution of T, and the total number of draws when the optimal strategy is implemented. We also give some asymptotic results for these quantities as n → ∞.


Sign in / Sign up

Export Citation Format

Share Document