scholarly journals Characterising scoring rules by their solution in iteratively undominated strategies

2021 ◽  
Author(s):  
Christian Basteck

AbstractWe characterize voting procedures according to the social choice correspondence they implement when voters cast ballots strategically, applying iteratively undominated strategies. In elections with three candidates, the Borda Rule is the unique positional scoring rule that satisfies unanimity (U) (i.e., elects a candidate whenever it is unanimously preferred) and is majoritarian after eliminating a worst candidate (MEW)(i.e., if there is a unanimously disliked candidate, the majority-preferred among the other two is elected). In a larger class of rules, Approval Voting is characterized by a single axiom that implies both U and MEW but is weaker than Condorcet-consistency (CON)—it is the only direct mechanism scoring rule that is majoritarian after eliminating a Pareto-dominated candidate (MEPD)(i.e., if there is a Pareto-dominated candidate, the majority-preferred among the other two is elected); among all finite scoring rules that satisfy MEPD, Approval Voting is the most decisive. However, it fails a desirable monotonicity property: a candidate that is elected for some preference profile, may lose the election once she gains further in popularity. In contrast, the Borda Rule is the unique direct mechanism scoring rule that satisfies U, MEW and monotonicity (MON). There exists no direct mechanism scoring rule that satisfies both MEPD and MON and no finite scoring rule satisfying CON.

Author(s):  
Hans Peters ◽  
Panos Protopapas

Abstract We consider choice correspondences that assign a subset to every choice set of alternatives, where the total set of alternatives is an arbitrary finite or infinite set. We focus on the relations between several extensions of the condition of independence of irrelevant alternatives on one hand, and conditions on the revealed preference relation on sets, notably the weak axiom of revealed preference, on the other hand. We also establish the connection between the condition of independence of irrelevant alternatives and so-called strong sets; the latter characterize a social choice correspondence satisfying independence of irrelevant alternatives.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Edward Wheatcroft

Abstract A scoring rule is a function of a probabilistic forecast and a corresponding outcome used to evaluate forecast performance. There is some debate as to which scoring rules are most appropriate for evaluating forecasts of sporting events. This paper focuses on forecasts of the outcomes of football matches. The ranked probability score (RPS) is often recommended since it is ‘sensitive to distance’, that is it takes into account the ordering in the outcomes (a home win is ‘closer’ to a draw than it is to an away win). In this paper, this reasoning is disputed on the basis that it adds nothing in terms of the usual aims of using scoring rules. A local scoring rule is one that only takes the probability placed on the outcome into consideration. Two simulation experiments are carried out to compare the performance of the RPS, which is non-local and sensitive to distance, the Brier score, which is non-local and insensitive to distance, and the Ignorance score, which is local and insensitive to distance. The Ignorance score outperforms both the RPS and the Brier score, casting doubt on the value of non-locality and sensitivity to distance as properties of scoring rules in this context.


Author(s):  
M. XIE ◽  
O. GAUDOIN ◽  
C. BRACQUEMOND

For discrete distribution with reliability function R(k), k = 1, 2,…,[R(k - 1) - R(k)]/R(k - 1) has been used as the definition of the failure rate function in the literature. However, this is different from that of the continuous case. This discrete version has the interpretation of a probability while it is known that a failure rate is not a probability in the continuous case. This discrete failure rate is bounded, and hence cannot be convex, e.g., it cannot grow linearly. It is not additive for series system while the additivity for series system is a common understanding in practice. In the paper, another definition of discrete failure rate function as In[R(k - 1)/R(k)] is introduced, and the above-mentioned problems are resolved. On the other hand, it is shown that the two failure rate definitions have the same monotonicity property. That is, if one is increasing/decreasing, the other is also increasing/decreasing. For other aging concepts, the new failure rate definition is more appropriate. The failure rate functions according to this definition are given for a number of useful discrete reliability functions.


1997 ◽  
Vol 11 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Torgny Lindvall

When starting from 0, a standard M/M/k queueing process has a second-order stochastic monotonicity property of a strong kind: its increments are stochastically decreasing (the SDI property). A first attempt to generalize this to the Jackson queueing network fails. This gives us reason to reexamine the underlying theory for stochastic monotonicity of Markov processes starting from a zero-point, in order to find a condition on a function of a Jackson network process to have the SDI property. It turns out that the total number of customers at time t has the desired property, if the network is idle at time O. We use couplings in our analysis; they are also of value in the comparison of two networks with different parameters.


2011 ◽  
Vol 10 (01) ◽  
pp. 73-99 ◽  
Author(s):  
PATRICK F. SMITH

Let R be a ring with identity. A unital left R-module M has the min-property provided the simple submodules of M are independent. On the other hand a left R-module M has the complete max-property provided the maximal submodules of M are completely coindependent, in other words every maximal submodule of M does not contain the intersection of the other maximal submodules of M. A semisimple module X has the min-property if and only if X does not contain distinct isomorphic simple submodules and this occurs if and only if X has the complete max-property. A left R-module M has the max-property if [Formula: see text] for every positive integer n and distinct maximal submodules L, Li (1 ≤ i ≤ n) of M. It is proved that a left R-module M has the complete max-property if and only if M has the max-property and every maximal submodule of M/Rad M is a direct summand, where Rad M denotes the radical of M, and in this case every maximal submodule of M is fully invariant. Various characterizations are given for when a module M has the max-property and when M has the complete max-property.


2002 ◽  
Vol 44 (1) ◽  
pp. 91-113 ◽  
Author(s):  
Mathieu Martin ◽  
Vincent Merlin

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Łukasz Krzywiecki ◽  
Tomasz Wlisłocki

In extended Key Compromise Impersonation (eKCI) attack against authenticated key establishment (AKE) protocols the adversary impersonates one party, having the long term key and the ephemeral key of the other peer party. Such an attack can be mounted against variety of AKE protocols, including 3-pass HMQV. An intuitive countermeasure, based on BLS (Boneh–Lynn–Shacham) signatures, for strengthening HMQV was proposed in literature. The original HMQV protocol fulfills the deniability property: a party can deny its participation in the protocol execution, as the peer party can create a fake protocol transcript indistinguishable from the real one. Unfortunately, the modified BLS based version of HMQV is not deniable. In this paper we propose a method for converting HMQV (and similar AKE protocols) into a protocol resistant to eKCI attacks but without losing the original deniability property. For that purpose, instead of the undeniable BLS, we use a modification of Schnorr authentication protocol, which is deniable and immune to ephemeral key leakages.


2016 ◽  
Vol 166 ◽  
pp. 304-310 ◽  
Author(s):  
David S. Ahn ◽  
Santiago Oliveros

Sign in / Sign up

Export Citation Format

Share Document