Bi-conformal vector fields and the local geometric characterization of conformally separable pseudo-Riemannian manifolds I

2006 ◽  
Vol 56 (7) ◽  
pp. 1069-1095 ◽  
Author(s):  
Alfonso García-Parrado Gómez-Lobo
Author(s):  
D. A. Catalano

We give here a geometric proof of the existence of certain local coordinates on a pseudo-Riemannian manifold admitting a closed conformal vector field.


2020 ◽  
Vol 31 (12) ◽  
pp. 2050095
Author(s):  
Qiaoling Xia

In this paper, we give an equivalent characterization of conformal vector fields on a Finsler manifold [Formula: see text], whose metric [Formula: see text] is defined by a Riemannian metric [Formula: see text] and a 1-form [Formula: see text]. This characterization contains all related results in [Z. Shen and Q. Xia, On conformal vector fields on Randers manifolds, Sci. China Math. 55(9) (2012) 1869–1882; Z. Shen and M. Yuan, Conformal vector fields on some Finsler manifolds, Sci. China Math. 59(1) (2016) 107–114; X. Cheng, Y. Li and T. Li, The conformal vector fields on Kropina manifolds, Diff. Geom. Appl. 56 (2018) 344–354] as special cases. Further, we determine conformal fields on some Finsler manifolds [Formula: see text] when [Formula: see text] is of constant sectional curvature and [Formula: see text] is a conformal 1-form with respect to [Formula: see text].


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2362
Author(s):  
Ali H. Alkhaldi ◽  
Pişcoran Laurian-Ioan ◽  
Abimbola Abolarinwa ◽  
Akram Ali

In this paper, some sufficient conditions of almost Yamabe solitons are established, such that the solitons are Yamabe metrics, by which we mean metrics of constant scalar curvature. This is achieved by imposing fewer topological constraints. The properties of the conformal vector fields are exploited for the purpose of establishing various necessary criteria on the soliton vector fields of gradient almost Yamabe solitons so as to obtain Yamabe metrics.


1974 ◽  
Vol 55 ◽  
pp. 1-3 ◽  
Author(s):  
David E. Blair

In [1] S. Kobayashi showed that the connected components of the set of zeros of a Killing vector field on a Riemannian manifold (Mn,g) are totally geodesic submanifolds of (Mn,g) of even codimension including the case of isolated singular points. The purpose of this short note is to give a simple proof of the corresponding result for conformal vector fields on compact Riemannian manifolds. In particular we prove the following


Sign in / Sign up

Export Citation Format

Share Document