scholarly journals Moduli spaces of framed sheaves and quiver varieties

2017 ◽  
Vol 118 ◽  
pp. 20-39 ◽  
Author(s):  
Claudio Bartocci ◽  
Valeriano Lanza ◽  
Claudio L.S. Rava
2017 ◽  
Vol 121 ◽  
pp. 176-179
Author(s):  
Claudio Bartocci ◽  
Valeriano Lanza ◽  
Claudio L.S. Rava

2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
Alistair Savage

International audience We show that the category of representations of the Euclidean group $E(2)$ is equivalent to the category of representations of the preprojective algebra of the quiver of type $A_{\infty}$. Furthermore, we consider the moduli space of $E(2)$-modules along with a set of generators. We show that these moduli spaces are quiver varieties of the type considered by Nakajima. These identifications allow us to draw on known results about preprojective algebras and quiver varieties to prove various statements about representations of $E(2)$. In particular, we show that $E(2)$ has wild representation type but that if we impose certain combinatorial restrictions on the weight decompositions of a representation, we obtain only a finite number of indecomposable representations. Nous montrons que la catégorie des représentations du groupe d'Euclide $E(2)$ est équivalente à la catégorie des représentations de l'algèbre préprojective de type $A_{\infty}$. De plus, nous considérons l'espace classifiant de modules de $E(2)$ avec un ensemble de générateurs. Nous montrons que ces espaces sont de variétés de carquois de Nakajima. Cette identification nous permet d'utiliser des résultats des algèbres préprojectives et des variétés de carquois pour prouver des affirmations sur des représentations de $E(2)$. En particulier, nous montrons que le type de représentations de $E(2)$ est sauvage mais si nous imposons des restrictions aux poids d'une représentation, il y a seulement un nombre fini de représentations qui ne sont pas décomposables.


2008 ◽  
Vol 144 (6) ◽  
pp. 1403-1428 ◽  
Author(s):  
David Ben-Zvi ◽  
Thomas Nevins

AbstractWe present a simple description of moduli spaces of torsion-free 𝒟-modules (𝒟-bundles) on general smooth complex curves, generalizing the identification of the space of ideals in the Weyl algebra with Calogero–Moser quiver varieties. Namely, we show that the moduli of 𝒟-bundles form twisted cotangent bundles to moduli of torsion sheaves on X, answering a question of Ginzburg. The corresponding (untwisted) cotangent bundles are identified with moduli of perverse vector bundles on T*X, which contain as open subsets the moduli of framed torsion-free sheaves (the Hilbert schemes T*X[n] in the rank-one case). The proof is based on the description of the derived category of 𝒟-modules on X by a noncommutative version of the Beilinson transform on P1.


Author(s):  
Naoki Koseki

AbstractIn order to study the wall-crossing formula of Donaldson type invariants on the blown-up plane, Nakajima–Yoshioka constructed a sequence of blow-up/blow-down diagrams connecting the moduli space of torsion free framed sheaves on projective plane, and that on its blow-up. In this paper, we prove that Nakajima–Yoshioka’s diagram realizes the minimal model program. Furthermore, we obtain a fully-faithful embedding between the derived categories of these moduli spaces.


2002 ◽  
pp. 99-109
Author(s):  
Hubert Flenner ◽  
Martin Lübke
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document