framed sheaves
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 2)

H-INDEX

4
(FIVE YEARS 0)

Author(s):  
Alberto Cazzaniga ◽  
Andrea T. Ricolfi

AbstractWe prove that, given integers $$m\ge 3$$ m ≥ 3 , $$r\ge 1$$ r ≥ 1 and $$n\ge 0$$ n ≥ 0 , the moduli space of torsion free sheaves on $${\mathbb {P}}^m$$ P m with Chern character $$(r,0,\ldots ,0,-n)$$ ( r , 0 , … , 0 , - n ) that are trivial along a hyperplane $$D \subset {\mathbb {P}}^m$$ D ⊂ P m is isomorphic to the Quot scheme $$\mathrm{Quot}_{{\mathbb {A}}^m}({\mathscr {O}}^{\oplus r},n)$$ Quot A m ( O ⊕ r , n ) of 0-dimensional length n quotients of the free sheaf $${\mathscr {O}}^{\oplus r}$$ O ⊕ r on $${\mathbb {A}}^m$$ A m . The proof goes by comparing the two tangent-obstruction theories on these moduli spaces.


Author(s):  
Naoki Koseki

AbstractIn order to study the wall-crossing formula of Donaldson type invariants on the blown-up plane, Nakajima–Yoshioka constructed a sequence of blow-up/blow-down diagrams connecting the moduli space of torsion free framed sheaves on projective plane, and that on its blow-up. In this paper, we prove that Nakajima–Yoshioka’s diagram realizes the minimal model program. Furthermore, we obtain a fully-faithful embedding between the derived categories of these moduli spaces.


2017 ◽  
Vol 121 ◽  
pp. 176-179
Author(s):  
Claudio Bartocci ◽  
Valeriano Lanza ◽  
Claudio L.S. Rava

2017 ◽  
Vol 118 ◽  
pp. 20-39 ◽  
Author(s):  
Claudio Bartocci ◽  
Valeriano Lanza ◽  
Claudio L.S. Rava

2017 ◽  
Vol 141 (4) ◽  
pp. 353-383 ◽  
Author(s):  
Emilio Franco ◽  
Marcos Jardim ◽  
Simone Marchesi
Keyword(s):  

2016 ◽  
Vol 288 ◽  
pp. 1175-1308 ◽  
Author(s):  
Ugo Bruzzo ◽  
Mattia Pedrini ◽  
Francesco Sala ◽  
Richard J. Szabo

2016 ◽  
Vol 16 (4) ◽  
Author(s):  
Claudio Bartocci ◽  
Ugo Bruzzo ◽  
Claudio L. S. Rava

2015 ◽  
Vol 272 ◽  
pp. 20-95 ◽  
Author(s):  
Ugo Bruzzo ◽  
Francesco Sala ◽  
Mattia Pedrini
Keyword(s):  

2015 ◽  
Vol 15 (1) ◽  
Author(s):  
Claudio Bartocci ◽  
Claudio L. S. Rava ◽  
Ugo Bruzzo

AbstractWe define monads for framed torsion-free sheaves on Hirzebruch surfaces and use them to construct moduli spaces for these objects. These moduli spaces are smooth algebraic varieties, and we show that they are fine by constructing a universal monad.


Sign in / Sign up

Export Citation Format

Share Document