scholarly journals Induction of NF-κB inflammatory pathway in monocytes by microparticles from patients with systemic lupus erythematosus

Heliyon ◽  
2020 ◽  
Vol 6 (12) ◽  
pp. e05815
Author(s):  
Karen Álvarez ◽  
Juan Villar-Vesga ◽  
Blanca Ortiz-Reyes ◽  
Adriana Vanegas-García ◽  
Diana Castaño ◽  
...  
2021 ◽  
Vol 8 ◽  
Author(s):  
Jessica Y. Morales ◽  
Cassandra M. Young-Stubbs ◽  
Caroline G. Shimoura ◽  
William R. Kem ◽  
Victor V. Uteshev ◽  
...  

There is a critical need for safe treatment options to control inflammation in patients with systemic lupus erythematosus (SLE) since the inflammation contributes to morbidity and mortality in advanced disease. Endogenous neuroimmune mechanisms like the cholinergic anti-inflammatory pathway can be targeted to modulate inflammation, but the ability to manipulate such pathways and reduce inflammation and end organ damage has not been fully explored in SLE. Positive allosteric modulators (PAM) are pharmacological agents that inhibit desensitization of the nicotinic acetylcholine receptor (α7-nAChR), the main anti-inflammatory feature within the cholinergic anti-inflammatory pathway, and may augment α7-dependent cholinergic tone to generate therapeutic benefits in SLE. In the current study, we hypothesize that activating the cholinergic anti-inflammatory pathway at the level of the α7-nAChR with systemic administration of a partial agonist, GTS-21, and a PAM, PNU-120596, would reduce inflammation, eliminating the associated end organ damage in a mouse model of SLE with advanced disease. Further, we hypothesize that systemic α7 ligands will have central effects and improve behavioral deficits in SLE mice. Female control (NZW) and SLE mice (NZBWF1) were administered GTS-21 or PNU-120596 subcutaneously via minipumps for 2 weeks. We found that the increased plasma dsDNA autoantibodies, splenic and renal inflammation, renal injury and hypertension usually observed in SLE mice with advanced disease at 35 weeks of age were not altered by GTS-21 or PNU-120596. The anxiety-like behavior presented in SLE mice was also not improved by GTS-21 or PNU-120596. Although no significant beneficial effects of α7 ligands were observed in SLE mice at this advanced stage, we predict that targeting this receptor earlier in the pathogenesis of the disease may prove to be efficacious and should be addressed in future studies.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Caroline G Shimoura ◽  
Cassandra Y Stubbs ◽  
Calvin Brooks ◽  
Keisa W Mathis

The cholinergic anti-inflammatory pathway is a vagally-mediated mechanism that controls inflammation. Our published data suggest that an impaired cholinergic anti-inflammatory pathway contributes to hypertension and renal disease in female mice with systemic lupus erythematosus (SLE), since pharmacological potentiation of the efferent vagus via administration of galantamine reduces renal inflammation, mean arterial pressure (MAP) and glomerulosclerosis. The aim of the current study is to selectively target neurons within the dorsal motor nucleus of the vagus (DMV) to stimulate the efferent vagus and the cholinergic anti-inflammatory pathway using designer receptors exclusively activated by designer drugs (DREADDs). We hypothesized that selective activation of DMV neurons would reduce inflammation, eliminating the associated end organ damage in SLE. To study this, female SLE ( NZBWF1 ) and parental control ( NZW ) mice received bilateral microinjections of pAAV-hSyn-hM3D(Gq)-mCherry or pAAV-hSyn-mCherry (control virus) into the DMV at 31 weeks of age using the following coordinates with calamus as reference: 0 mm caudal, 0.25 mm lateral and 0.48 mm ventral. Two weeks post-microinjection, DREADD agonist CNO (3mg/kg) was administered subcutaneously for 2 weeks starting at 33 weeks. At 35 weeks, mice were housed in metabolic cages for urine collection and catheters were implanted in the carotid artery for MAP measurement. Mice were subsequently euthanized and the brain collected to confirm the site of virus microinjection. Selective activation of DMV neurons decreased the incidence of albuminuria [> 300 mg/dL; 66% (4 out of 6) vs. 0% (0 out of 7)], urinary leukocytes [62.5% (5 out of 8) vs. 50% (3 out of 6)] and blood in the urine [50% (4 out of 8) vs. 16% (1 out of 6)] in SLE mice. MAP did not significantly change with the chemogenetic activation of DMV neurons in SLE mice or parental controls (SLE/control virus: 146 ± 6, n=7; SLE/Gq DREADD: 142 ± 3, n=6; NZW/control virus: 126 ± 4, n=4; NZW/Gq DREADD: 132 ± 2, n=5). These results suggests that this timeline of selective activation of DMV neurons in SLE mice reduces renal injury without altering blood pressure, but future studies will confirm the effect on hypertension and renal inflammation in SLE mice


2018 ◽  
Vol 315 (6) ◽  
pp. R1261-R1271 ◽  
Author(s):  
Grace S. Pham ◽  
Lei A. Wang ◽  
Keisa W. Mathis

Recent evidence suggests hypertension may be secondary to chronic inflammation that results from hypoactive neuro-immune regulatory mechanisms. To further understand this association, we used systemic lupus erythematosus (SLE) as a model of inflammation-induced hypertension. In addition to prevalent inflammatory kidney disease and hypertension, SLE patients suffer from dysautonomia in the form of decreased efferent vagal tone. Based on this, the cholinergic anti-inflammatory pathway, an endogenous vagus-to-spleen mechanism that, when activated results in decreases in systemic inflammation, may be compromised in SLE. We hypothesized that stimulation of the cholinergic anti-inflammatory pathway via pharmacological potentiation of the efferent vagus nerve would reduce inflammation and halt the development of hypertension and renal injury in SLE. Female NZBWF1 mice, an established model of murine SLE, and female control mice were treated with galantamine (4 mg/kg daily ip), an acetylcholinesterase inhibitor, or saline for 14 days. At the end of therapy, carotid catheters were surgically implanted and were used to measure mean arterial pressure before the animals were euthanized. Chronic galantamine administration attenuated both splenic and renal cortical inflammation, which likely explains why the hypertension and renal injury (i.e., glomerulosclerosis and fibrosis) typically observed in murine SLE was attenuated following therapy. Based on this, the anti-inflammatory, antihypertensive, and renoprotective effects of galantamine may be mediated through activation of the cholinergic anti-inflammatory pathway. It is possible that dysfunction of the cholinergic anti-inflammatory pathway exists in SLE at the level of the efferent vagus nerve and promoting restoration of its activity through central cholinergic receptor activation may be beneficial.


Author(s):  
Francis R. Comerford ◽  
Alan S. Cohen

Mice of the inbred NZB strain develop a spontaneous disease characterized by autoimmune hemolytic anemia, positive lupus erythematosus cell tests and antinuclear antibodies and nephritis. This disease is analogous to human systemic lupus erythematosus. In ultrastructural studies of the glomerular lesion in NZB mice, intraglomerular dense deposits in mesangial, subepithelial and subendothelial locations were described. In common with the findings in many examples of human and experimental nephritis, including many cases of human lupus nephritis, these deposits were amorphous or slightly granular in appearance with no definable substructure.We have recently observed structured deposits in the glomeruli of NZB mice. They were uncommon and were found in older animals with severe glomerular lesions by morphologic criteria. They were seen most commonly as extracellular elements in subendothelial and mesangial regions. The deposits ranged up to 3 microns in greatest dimension and were often adjacent to deposits of lipid-like round particles of 30 to 250 millimicrons in diameter and with amorphous dense deposits.


2000 ◽  
Vol 6 (7) ◽  
pp. 821-825 ◽  
Author(s):  
ELIZABETH LERITZ ◽  
JASON BRANDT ◽  
MELISSA MINOR ◽  
FRANCES REIS-JENSEN ◽  
MICHELLE PETRI

Sign in / Sign up

Export Citation Format

Share Document