An analytical solution of the hyperbolic heat conduction equation for the case of a finite medium symmetrically heated on both sides

Author(s):  
M. Lewandowska ◽  
L. Malinowski
2016 ◽  
Vol 33 (1) ◽  
pp. 65-75 ◽  
Author(s):  
M. R. Talaee ◽  
V. Sarafrazi

AbstractThis paper is devoted to the analytical solution of three-dimensional hyperbolic heat conduction equation in a finite solid medium with rectangular cross-section under time dependent and non-uniform internal heat source. The closed form solution of both Fourier and non-Fourier profiles are introduced with Eigen function expansion method. The solution is applied for simple simulation of absorption of a continues laser in biological tissue. The results show the depth of laser absorption in tissue and considerable difference between the Fourier and Non-Fourier temperature profiles. In addition the solution can be applied as a verification branch for other numerical solutions.


Author(s):  
Hossein Shokouhmand ◽  
Seyed Reza Mahmoudi ◽  
Kaveh Habibi

This paper presents an analytical solution of the hyperbolic heat conduction equation for a finite slab that sides are subjected to arbitrary heat source, boundary, and initial conditions. In the mathematical model used in this study, the heating on both sides treated as an apparent heat source while sides of the slab assumed to be insulated. Distribution of the apparent heat source for a problem with arbitrary heating on two boundaries is solved. The solution obtained by separation of variable method using appropriate Fourier series. Being a Sturm-Liouville problem in x-direction, suitable orthogonal functions can be allocated to hyperbolic heat conduction equation depending on the type of boundary conditions. Despite ease of proposed method, very few works has been done to solve hyperbolic heat conduction problems using this method by authors. The main feature of the method is straightforward formulation. In the analysis of heat conduction involving extremely short times, the parabolic heat conduction equation breaks down. By increasing the applications of the fast heat sources such as laser pulse for annealing of semiconductors and high heat flux applications, the need for adequate model of heat conduction has arisen. The hyperbolic heat conduction equation eliminates the paradox of an infinite speed of propagation of thermal disturbances which contradicts with Einstein’s theory of relativity. Moreover, it describes the highly transient temperature distribution in a finite medium more accurately.


2012 ◽  
Vol 134 (12) ◽  
Author(s):  
R. T. Al-khairy

This paper presents an analytical solution of the hyperbolic heat conduction equation for a moving finite medium under the effect of a time-dependent laser heat source. Laser heating is modeled as an internal heat source, whose capacity is given by g(x,t) = I(t) (1 – R)μe−μx while the finite body has an insulated boundary. The solution is obtained by the Laplace transforms method, and the discussion of solutions for two time characteristics of heat source capacities (instantaneous and exponential) is presented. The effect of the dimensionless medium velocity on the temperature profiles is examined in detail. It is found that there exists clear phase shifts in connection with the dimensionless velocity U in the spatial temperature distributions: the temperature curves with negative U values lag behind the reference curves with zero U, while the ones with positive U values precedes the reference curves. It is also found that the phase differences are the sole products of U, with increasing U predicting larger phase differences.


Sign in / Sign up

Export Citation Format

Share Document