infinite plate
Recently Published Documents


TOTAL DOCUMENTS

1013
(FIVE YEARS 78)

H-INDEX

36
(FIVE YEARS 3)

2021 ◽  
pp. 108128652110600
Author(s):  
YZ Chen

In this paper, a particular inhomogeneous inclusion problem is studied. In the problem, Eshelby’s eigenstrain takes the type [Formula: see text], where m+ n = 2, and the remote loadings [Formula: see text], [Formula: see text] are applied. In the solution, the complex variable method is used. The continuity conditions along the interface of the matrix and the inclusion are formulated exactly. Because the stress field is no longer uniform in inclusion in this case, the studied problem has an inherent difficulty. After some manipulation, the final result for stress components [Formula: see text], [Formula: see text] and [Formula: see text] in inclusion are obtainable. In the present study, [Formula: see text], [Formula: see text] and [Formula: see text] are no longer uniform.


2021 ◽  
Vol 2131 (3) ◽  
pp. 032083
Author(s):  
S A Rukhlenko

Abstract Normal impact of a massive body on a uniformly stretched plate lying on the base is investigated. A hinged round or rectangular plate on an elastic base, or an infinite plate on the surface of an ideal incompressible fluid is considered. The solution to the elastoplastic impact is in good agreement with numerical calculations and experimental data. With a small parameter of elastic collapse, that is, with the developed local plastic deformations, a solution to the problem of impact with rigid-plastic local collapse can be used. Approximate formulas for calculating the main characteristics of rigid-plastic impact are set up.


2021 ◽  
Vol 21 (3) ◽  
pp. 239-246
Author(s):  
A. V. Galaburdin

Introduction. A method for solving the problem on the action of a normal force moving on an infinite plate according to an arbitrary law is considered. This method and the results obtained can be used to study the effect of a moving load on various structures.Materials and Methods. An original method for solving problems of the action of a normal force moving arbitrarily along a freeform open curve on an infinite plate resting on an elastic base, is developed. For this purpose, a fundamental solution to the differential equation of the dynamics of a plate resting on an elastic base is used. It is assumed that the movement of force begins at a sufficiently distant moment in time. Therefore, there are no initial conditions in this formulation of the problem. When determining the fundamental solution, the Fourier transform is performed in time. When the Fourier transform is inverted, the image is expanded in terms of the transformation parameter into a series in Hermite polynomials.Results. The solution to the problem on an infinite plate resting on an elastic base, along which a concentrated force moves at a variable speed, is presented. A smooth open curve, consisting of straight lines and arcs of circles, was considered as a trajectory. The behavior of the components of the displacement vector and the stress tensor at the location of the moving force is studied, as well as the process of wave energy propagation, for which the change in the Umov-Poynting energy flux density vector is considered. The effect of the speed and acceleration of the force movement on the displacements, stresses and propagation of elastic waves is investigated. The influence of the force trajectory shape on the stress-strain state of the plate and on the nature of the propagation of elastic waves is studied. The results indicate that the method is quite stable within a wide range of changes in the speed of force movement.Discussion and Conclusions. The calculations have shown that the most significant factor affecting the stress-strain states of the plate and the propagation of elastic wave energy near the concentrated force is the speed of its movement. These results will be useful under studying dynamic processes generated by a moving load.


2021 ◽  
Vol 26 (3) ◽  
pp. 221-230
Author(s):  
Xiaoming Zhang ◽  
Shuangshuang Shao ◽  
Shuijun Shao

Ultrasonic guided waves are widely used in non-destructive testing (NDT), and complete guided wave dispersion, including propagating and evanescent modes in a given waveguide, is essential for NDT. Compared with an infinite plate, the finite lateral width of a rectangular bar introduces a greater density of modes, and the dispersion solutions become more complicated. In this study, a recursive Legendre polynomial analytical integral (RLPAI) method is presented to calculate the dispersion behaviours of guided waves in rectangular bars of orthotropic materials. The existing polynomial method involves a large number of numerical integration steps, and it is often computationally costly to compute these integrals. The presented RLPAI method uses analytical integration instead of numerical integration, thus leading to a significant improvement in the computational speed. The results are compared with those published previously to validate our method, and the computational efficiency is discussed. The full three-dimensional dispersion curves are plotted. The dispersion characteristics of propagating and evanescent waves are investigated in various rectangular bars. The influences of different width-to-thickness ratios on the dispersion curves of four types of low-order modes for a rectangular bar of an orthotropic composite are illustrated.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Muhammad Imran Asjad ◽  
Abdul Basit ◽  
Ali Akgül ◽  
Taseer Muhammad

The unsteady flow of Jeffrey fluid along with a vertical plate is studied in this paper. The equations of momentum, energy, and generalized Fourier’s law of thermal flux are transformed to non-dimensional form for the proper dimensionless parameters. The Prabhakar fractional operator is applied to acquire the fractional model using the constitutive equations. To obtain the generalized results for velocity and temperature distribution, Laplace transform is performed. The influences of fractional parameters α , β , γ , thermal Grashof number Gr , and non-dimensional Prandtl number Pr upon velocity and temperature distribution are presented graphically. The results are improved in the form of decay of energy and momentum equations, respectively. The new fractional parameter contains the Mittag-Leffler kernel with three fractional parameters which are responsible for better memory of the fluid properties rather than the exponential kernel appearing in the Caputo–Fabrizio fractional operator. The Prabhakar fractional operator has advantage over Caputo–Fabrizio in the real data fitting where needed.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Sana Bajwa ◽  
Saif Ullah ◽  
Ilyas Khan ◽  
Md. Fayz-Al-Asad

Transient incompressible flows of Jeffrey fluids over a permeable, flat, and infinite plate have been investigated. The plate motion is an oscillatory translation along the x-axis. Using the Laplace transform and perturbation method, the analytical solution for the velocity field in the transform domain has been obtained. The velocity field in the real domain has been determined by using the numerical Stehfest’s algorithm for the Laplace transform inversion. To have a validation of the obtained solution, we have determined the analytical solution for the flow without transpiration. It was found that when the transpiration parameter approaches zero, the solution for the flow with transpiration tends to the solution corresponding to the case without perspiration. The influence of the system parameters on fluid motion has been investigated by numerical simulations and graphical illustrations prepared with the software package Mathcad.


2021 ◽  
Vol 11 (17) ◽  
pp. 8111
Author(s):  
Jianming Zhang ◽  
Wensheng Yang ◽  
Jun Chen ◽  
Rui Xu

Stress intensity factor (SIF) is one of three important parameters in classical linear elastic fracture mechanics (LEFM). The evaluation of SIFs is of great significance in the field of engineering structural and material damage assessment, such as aerospace engineering and automobile industry, etc. In this paper, the SIFs of a central straight crack plate, a slanted single-edge cracked plate under end shearing, the offset double-edge cracks rectangular plate, a branched crack in an infinite plate and a crucifix crack in a square plate under bi-axial tension are extracted by using the p-version finite element method (P-FEM) and contour integral method (CIM). The above single- and multiple-crack problems were investigated, numerical results were compared and analyzed with results using other numerical methods in the literature such as the numerical manifold method (NMM), improved approach using the finite element method, particular weight function method and exponential matrix method (EMM). The effectiveness and accuracy of the present method are verified.


Sign in / Sign up

Export Citation Format

Share Document