dynamic stresses
Recently Published Documents


TOTAL DOCUMENTS

354
(FIVE YEARS 49)

H-INDEX

20
(FIVE YEARS 2)

2022 ◽  
Vol 12 (2) ◽  
pp. 712
Author(s):  
Wangang Zhu ◽  
Wei Sun ◽  
Hao Wu

The vibration data of the gearbox on a high-speed train was measured, and the vibration characteristics were analyzed in this paper. The dynamic stress of the gearbox under the internal and external excitation was examined by a railway vehicle dynamic model with a flexible gearbox and a flexible wheelset. The ideal 20th polygonal wear was considered, and dynamic stresses of the gearbox under different polygonal wear amplitudes were calculated. The gear transmission model was established to study the dynamic stress of the gearbox under the influence of the time-varying stiffness of the gear meshing. Based on the rigid–flexible coupling model, and considering the influence of wheel polygonization, gear meshing time-varying stiffness, and wheelset elastic deformation, the dynamic stress of the gearbox was investigated with consideration of the measured polygonal wear and measured rail excitation. The results show that the dynamic stress of the gearbox is dominated by the wheel polygonization. Moreover, not only the wheel polygonization excites the resonance of the gearbox, but also the flexible deformation of the wheelset leads to the deformation of the gearbox, which also increases the dynamic stress of the gearbox. Within the resonant bandwidth of the frequency, the amplitude of the dynamic stresses in the gearbox will increase considerably compared with the normal case.


2022 ◽  
Author(s):  
V. Belov

Abstract. The ability of solid structures to absorb a certain part of the energy of dynamic impacts has not been properly reflected in impact theories. Meanwhile the effect of material properties on the various structures in the impact is so much that ignoring it when the solution of a large number dynamic problems makes it impossible to explain without distorting quantitatively and qualitatively, many of the actually observed phenomena, for example, equalization of dynamic stresses in places of their concentration and fluctuation of other parameters. In the article, two independent parameters for conventional reinforced concrete beams and those made of limestone concrete are compared, namely dynamic coefficient and the values of elastic rebound in impact. The effect of the reinforcement is not discussed in the paper.


Author(s):  
Ulanbator Suleimenov ◽  
Nurlan Zhangabay ◽  
Akmaral Utelbayeva ◽  
Mohamad Nasir Mohamad Ibrahim ◽  
Arman Moldagaliyev ◽  
...  

This paper considers the structural solution for a main above-ground pipeline with a pre-stressed winding, which makes it possible to improve the efficiency of operation and reduce material consumption. The results from studying experimentally the features in the operation of prestressed pipelines under static operating loads are given. It is shown that the radial movements of the wall of a pre-stressed pipeline are constrained by the strained winding, which prevents its deformation. It was revealed that increasing the tension force of the winding wire reduces circular stresses in the pipeline wall by 1.3...1.6 times and increases meridional ones by 1.2...1.4 times. The experimental study into the models of prestressed pipelines with free vertical and horizontal oscillations has established the dependence of frequency characteristics on the operating conditions and pre-stress parameters. It was found that the envelope amplitude on the oscillogram of free attenuated oscillations takes the shape of an exponent, which indicates the damping effect of the pre-stress. Analysis of the change in the dynamic characteristics of the models depending on the pre-stress force has revealed that the frequencies of free oscillations increase by 1.5÷1.6 times while the oscillation decrement decreases by 1.2÷1.25 times. This paper reports the results of studying the influence of pre-stress parameters on the stressed-strained state of the pipeline model under forced horizontal and vertical oscillations. It is shown that the diagrams of circular dynamic stresses and deformations in the models of a prestressed pipeline are smoother compared to similar characteristics of a conventional pipeline tested at the same experimental parameters. The study results have made it possible to quantify the features in the operation of a pre-stressed pipeline under static and dynamic influences, taking into consideration the pre-stress parameters and operating conditions.


Author(s):  
Oleh Pihnastyi ◽  
Svіtlana Chernіavska

The features of the propagation of dynamic stresses in a conveyor belt, the material properties of which correspond to the Maxwell element model, are considered. Analytical expressions are presented for calculating the dynamic elastic modulus, the loss modulus, and the angle of mechanical loss depending on the frequency of longitudinal oscillations in the belt of an extended transport conveyor. To analyze the dynamic stress propagation process, dimensionless parameters are introduced that characterize the specific features of the viscoelastic process in a conveyor belt, the material properties of which correspond to the Maxwell element model. The transition to the dimensionless Maxwell element model is made and the analysis of the relationship between stress and deformation of a conveyor belt element for extremely large and small values of dimensionless parameters is made. The substantiation of the scope of the Maxwell element model is given. It is shown that at sufficiently high frequencies of longitudinal stress oscillations in a conveyor belt, at which the oscillation period is much less than the characteristic oscillation decay time, the relationship between stress and deformation of the conveyor belt element corresponds to Hooke's law. A qualitative analysis of the relaxation time was carried out for a conveyor belt material, the properties of which correspond to the Maxwell element model. The analysis of the propagation of dynamic stresses in the conveyor belt for the characteristic operating modes of the transport conveyor is carried out. The conveyor operating mode with a constant deformation rate of the belt element; the mode in which a constant load is suddenly applied to the belt element; the conveyor operating mode with an instantly applied load to the belt element were investigated. It was determined that in cases where the characteristic process time significantly exceeds the stress relaxation time in the conveyor belt or the longitudinal oscillation period is much less than the stress relaxation time in the conveyor belt, the Maxwell element model can be replaced with a sufficient degree of accuracy by the Hooke element model.


Author(s):  
A.A. Sidorov ◽  
A.S. Golikov

The problem of assessing the dynamic stresses arising from vibrations of the blades of turbo machines is an urgent and significant problem affecting the overall reliability of the turbo machine. Its solution requires a mathematical study and a physical experiment to determine the intensity of the gas flow impact and the blade reaction.However, there is relatively little information in the scientific publications on this issue. The article considers a semi-empirical method for calculating dynamic stresses at the base of a variable cross-section blade at the first tone resonant vibrations. These vibrations can be considered as the most dangerous because of the maximum amplitude. To perform the calculation a real blade was replaced with a calculated one, composed of separate portions with a constant profile, and the contribution of each part to the stress in the base section was determined. An example of calculating the dynamic stress by the proposed method with a resonant vibration of the first tone of a constant-section blade is given. The calculation showed that the solution to a complex problem can be represented as a sum of solutions to simpler problems. The calculation method can be used in the design of turbine and compressor blades.


Author(s):  
Vikas Radhakrishna Deulgaonkar ◽  
S.N. Belsare ◽  
Naik Shreyas ◽  
Dixit Pratik ◽  
Kulkarni Pranav ◽  
...  

Present work deals with evaluation of stress, deflection and dynamic properties of the folded vehicle structure. The folded vehicle in present case is a single seat vehicle intended to carry one person. Design constraints are the folded dimensions of the vehicle and the maximum vehicle speed is limited to 15m/s. Using classical calculations dimensions of the vehicle are devised. Different materials are used for seat, telescopic support and chassis of the foldable vehicle. computer aided model is prepared using CATIA software. Finite element analysis of the foldable vehicle has been carried out to evaluate the static and dynamic stresses induced in the vehicle components. Meshing of the foldable vehicle is carried using Ansys Workbench. From modal analysis six mode shapes of the foldable vehicle are formulated, corresponding frequencies and deflections are devised. Mesh generator is used to mesh the foldable vehicle. The deflection and frequency magnitudes of foldable vehicle evaluated are in good agreement with the experimental results available in literature for similar materials.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3420
Author(s):  
Oleksij Fomin ◽  
Mykola Gorbunov ◽  
Juraj Gerlici ◽  
Glib Vatulia ◽  
Alyona Lovska ◽  
...  

The research is concerned with the use of double walls filled with aluminium foam for an open wagon in order to decrease the dynamic stresses during the operational modes. The research presents the strength calculation for the bearing structure of an open wagon with consideration of the engineering solutions proposed. It was found that the maximum equivalent stresses appeared in the bottom section of the centre sill behind the back support; they amounted to about 315 MPa and did not exceed the allowable values. The maximum displacements were detected in the middle section of the centre sill and amounted to 9.6 mm. The maximum deformations were 1.17 × 10−2. The research also presents the strength calculation for a weld joint in the maximum loaded zones of the bearing structure of an open wagon and gives the results of a modal analysis of the bearing structure of the improved open wagon. It was found that the critical oscillation frequencies did not exceed the allowable values. The results of the research may be useful for those who are concerned about designing innovative rolling stock units and improving the operational efficiency of railway transport.


2021 ◽  
Vol 774 (1) ◽  
pp. 012081
Author(s):  
Chamberland-Lauzon J. ◽  
DiSciullo J. ◽  
Monette C. ◽  
Nennemann B. ◽  
Afara S.

2021 ◽  
Vol 774 (1) ◽  
pp. 012100
Author(s):  
Funan Chen ◽  
Xiaolong Yang ◽  
Huili Bi ◽  
Zhongyu Mao ◽  
Yongyao Luo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document