scholarly journals Model Decomposition of Timed Event Graphs under Partial Synchronization in Dioids

2018 ◽  
Vol 51 (7) ◽  
pp. 198-205 ◽  
Author(s):  
J. Trunk ◽  
B. Cottenceau ◽  
L. Hardouin ◽  
J. Raisch
2020 ◽  
Vol 30 (4) ◽  
pp. 605-634
Author(s):  
Johannes Trunk ◽  
Bertrand Cottenceau ◽  
Laurent Hardouin ◽  
Joerg Raisch

Abstract Timed Event Graphs (TEGs) are a graphical model for decision free and time-invariant Discrete Event Systems (DESs). To express systems with time-variant behaviors, a new form of synchronization, called partial synchronization (PS), has been introduced for TEGs. Unlike exact synchronization, where two transitions t1,t2 can only fire if both transitions are simultaneously enabled, PS of transition t1 by transition t2 means that t1 can fire only when transition t2 fires, but t1 does not influence the firing of t2. This, for example can describe the synchronization between a local train and a long distance train. Of course it is reasonable to synchronize the departure of a local train by the arrival of long distance train in order to guarantee a smooth connection for passengers. In contrast, the long distance train should not be delayed due to the late arrival of a local train. Under the assumption that PS is periodic, we can show that the dynamic behavior of a TEG under PS can be decomposed into a time-variant and a time-invariant part. It is shown that the time-variant part is invertible and that the time-invariant part can be modeled by a matrix with entries in the dioid ${\mathcal{M}}_{in}^{ax}\left [\!\left [\gamma ,\delta \right ]\!\right ]$ M i n a x γ , δ , i.e. the time-invariant part can be interpreted as a standard TEG. Therefore, the tools introduced for standard TEGs can be used to analyze and to control the overall system. In particular, in this paper output reference control for TEGs under PS is addressed. This control strategy determines the optimal input for a predefined reference output. In this case optimality is in the sense of the ”just-in-time” criterion, i.e., the input events are chosen as late as possible under the constraint that the output events do not occur later than required by the reference output.


2017 ◽  
Vol 50 (1) ◽  
pp. 13453-13460 ◽  
Author(s):  
J. Trunk ◽  
B. Cottenceau ◽  
L. Hardouin ◽  
J. Raisch

Author(s):  
Xavier David-Henriet ◽  
Laurent Hardouin ◽  
Jorg Raisch ◽  
Bertrand Cottenceau

Author(s):  
Don van Ravenzwaaij ◽  
Han L. J. van der Maas ◽  
Eric-Jan Wagenmakers

Research using the Implicit Association Test (IAT) has shown that names labeled as Caucasian elicit more positive associations than names labeled as non-Caucasian. One interpretation of this result is that the IAT measures latent racial prejudice. An alternative explanation is that the result is due to differences in in-group/out-group membership. In this study, we conducted three different IATs: one with same-race Dutch names versus racially charged Moroccan names; one with same-race Dutch names versus racially neutral Finnish names; and one with Moroccan names versus Finnish names. Results showed equivalent effects for the Dutch-Moroccan and Dutch-Finnish IATs, but no effect for the Finnish-Moroccan IAT. This suggests that the name-race IAT-effect is not due to racial prejudice. A diffusion model decomposition indicated that the IAT-effects were caused by changes in speed of information accumulation, response conservativeness, and non-decision time.


Author(s):  
D. Nikitin ◽  
I. Omelchenko ◽  
A. Zakharova ◽  
M. Avetyan ◽  
A. L. Fradkov ◽  
...  

We study the spatio-temporal dynamics of a multiplex network of delay-coupled FitzHugh–Nagumo oscillators with non-local and fractal connectivities. Apart from chimera states, a new regime of coexistence of slow and fast oscillations is found. An analytical explanation for the emergence of such coexisting partial synchronization patterns is given. Furthermore, we propose a control scheme for the number of fast and slow neurons in each layer. This article is part of the theme issue ‘Nonlinear dynamics of delay systems’.


Sign in / Sign up

Export Citation Format

Share Document