model decomposition
Recently Published Documents


TOTAL DOCUMENTS

174
(FIVE YEARS 39)

H-INDEX

23
(FIVE YEARS 4)

Music is a widely used data format in the explosion of Internet information. Automatically identifying the style of online music in the Internet is an important and hot topic in the field of music information retrieval and music production. Recently, automatic music style recognition has been used in many real life scenes. Due to the emerging of machine learning, it provides a good foundation for automatic music style recognition. This paper adopts machine learning technology to establish an automatic music style recognition system. First, the online music is process by waveform analysis to remove the noises. Second, the denoised music signals are represented as sample entropy features by using empirical model decomposition. Lastly, the extracted features are used to learn a relative margin support vector machine model to predict future music style. The experimental results demonstrate the effectiveness of the proposed framework.


Author(s):  
Pierre Masselot ◽  
Fateh Chebana ◽  
Taha B. M. J. Ouarda ◽  
Diane Bélanger ◽  
Pierre Gosselin

Although the relationship between weather and health is widely studied, there are still gaps in this knowledge. The present paper proposes data transformation as a way to address these gaps and discusses four different strategies designed to study particular aspects of a weather–health relationship, including (i) temporally aggregating the series, (ii) decomposing the different time scales of the data by empirical model decomposition, (iii) disaggregating the exposure series by considering the whole daily temperature curve as a single function, and (iv) considering the whole year of data as a single, continuous function. These four strategies allow studying non-conventional aspects of the mortality-temperature relationship by retrieving non-dominant time scale from data and allow to study the impact of the time of occurrence of particular event. A real-world case study of temperature-related cardiovascular mortality in the city of Montreal, Canada illustrates that these strategies can shed new lights on the relationship and outlines their strengths and weaknesses. A cross-validation comparison shows that the flexibility of functional regression used in strategies (iii) and (iv) allows a good fit of temperature-related mortality. These strategies can help understanding more accurately climate-related health.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 247
Author(s):  
Xinyi Xiao ◽  
Hanbin Xiao

Robotic additive manufacturing (AM) has gained much attention for its continuous material deposition capability with continuously changeable building orientations, reducing support structure volume and post-processing complexity. However, the current robotic additive process heavily relies on manual geometric reasoning that identifies additive features, related building orientations, tool approach direction, trajectory generation, and sequencing all features in a non-collision manner. In addition, multi-directional material accumulation cannot ensure the nozzle always stays above the building geometry. Thus, the collision between these two becomes a significant issue that needs to be solved. Hence, the common use of a robotic additive is hindered by the lack of fully autonomous tools based on the abovementioned issues. We present a systematic approach to the robotic AM process that can automate the abovementioned planning procedures in the aspect of collision-free. Typically, input models to robotic AM have diverse information contents and data formats, hindering the feature recognition, extraction, and relations to the robotic motion. Our proposed method integrates the collision-avoidance condition to the model decomposition step. Therefore, the decomposed volumes can be associated with additional constraints, such as accessibility, connectivity, and trajectory planning. This generates an entire workspace for the robotic additive building platform, rotatability, and additive features to determine the entire sequence and avoid potential collisions. This approach classifies the uniqueness of autonomous manufacturing on the robotic AM system to build large and complex metal components that are non-achievable through traditional one-directional AM in a computationally effective manner. This approach also paves the path in constructing an in situ monitoring and closed-loop control on robotic AM to control and enhance the build quality of the robotic metal AM process.


Author(s):  
Gustav Zickert ◽  
Can Evren Yarman

AbstractWe propose a greedy variational method for decomposing a non-negative multivariate signal as a weighted sum of Gaussians, which, borrowing the terminology from statistics, we refer to as a Gaussian mixture model. Notably, our method has the following features: (1) It accepts multivariate signals, i.e., sampled multivariate functions, histograms, time series, images, etc., as input. (2) The method can handle general (i.e., ellipsoidal) Gaussians. (3) No prior assumption on the number of mixture components is needed. To the best of our knowledge, no previous method for Gaussian mixture model decomposition simultaneously enjoys all these features. We also prove an upper bound, which cannot be improved by a global constant, for the distance from any mode of a Gaussian mixture model to the set of corresponding means. For mixtures of spherical Gaussians with common variance $$\sigma ^2$$ σ 2 , the bound takes the simple form $$\sqrt{n}\sigma $$ n σ . We evaluate our method on one- and two-dimensional signals. Finally, we discuss the relation between clustering and signal decomposition, and compare our method to the baseline expectation maximization algorithm.


Author(s):  
Khan Muhammad Shehzad ◽  
Hao Su ◽  
Gong-You Tang ◽  
Bao-Lin Zhang

This paper deals with the optimal formation control problem based on model decomposition for multiple unmanned aerial vehicles (UAVs). The main contribution of this paper is to integrate the formation control and the trajectory tracking into one unified feedforward control and feedback control framework in an optimal mode. We first establish the dynamic model of the leader-follower UAV formation system, and the communication network topology which only depends on the position information given by the leader. Second, to reduce the complexity of the model, each follower is decomposed into three isolated subsystems. Third, a step-by-step formation controller design scheme decomposed into feedforward control and optimal control of formation control is proposed. Finally, the proposed scheme has been extensively simulated and the results demonstrate the stability and the optimality.


2021 ◽  
Vol 21 (9) ◽  
pp. 2921
Author(s):  
Catherine Manning ◽  
Cameron D Hassall ◽  
Laurence T Hunt ◽  
Anthony M Norcia ◽  
Eric-Jan Wagenmakers ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Jiang Yu ◽  
Yue Shang ◽  
Xiafei Li

Understanding the dependence and risk spillover among hedging assets is crucial for portfolio allocation and regulatory decision making. Using various copula and conditional Value-at-Risk (CoVaR) measures, this paper quantifies the dependence and risk spillover effects between three traditional and emerging hedging assets: Bitcoin, gold, and USD. Furthermore, we investigate these effects at various short- and long-term horizons using a variational model decomposition (VMD) method. The empirical results show that there is strong negative dependence between gold and USD, but Bitcoin and gold are weakly and positively connected. Secondly, risk spillovers exist only between Bitcoin and gold and between gold and USD. The risk spillover effect between Bitcoin and gold are not stable, that is, if Bitcoin or gold faces the downward or upward risk, both the downward and upward risk of another asset have the chance to increase. The negative risk spillover between gold and USD is stable, especially in long-term horizons. Finally, the risk spillover between Bitcoin and gold as well as between gold and USD are asymmetric at downward and upward market environment.


Sign in / Sign up

Export Citation Format

Share Document