Unsteady mixed-convection boundary layer flow along a symmetric wedge with variable surface temperature

2006 ◽  
Vol 44 (10) ◽  
pp. 607-620 ◽  
Author(s):  
Md. Anwar Hossain ◽  
Sidhartha Bhowmick ◽  
Rama Subba Reddy Gorla
2015 ◽  
Vol 25 (5) ◽  
pp. 1162-1175
Author(s):  
Saleh M. Al-Harbi ◽  
F. S. Ibrahim

Purpose – The purpose of this paper is to study laminar two-dimensional unsteady mixed-convection boundary-layer flow of a viscous incompressible fluid past a symmetric wedge embedded in a porous medium in the presence of the first and second orders resistances. Design/methodology/approach – The governing boundary-layer equations along with the boundary conditions are first converted into dimensionless form by a non-similar transformation, and then resulting system of coupled non-linear partial differential equations were solved by perturbation solutions for small dimensionless time until the second order. Numerical solutions of the governing equations are obtained employing the implicit finite-difference scheme in combination with the quasi-linearization technique. The obtained results will be compared with earlier papers on special cases of the problem to examine validity of the method of solution. Findings – The effects of various parameters on the fluid velocity and fluid temperature as well as the wall heat transfer rate and skin-friction coefficient are presented graphically and in tabulated form. Originality/value – The study of heat transfer in porous media has been attracted the attention of many researchers in recent times due to the utmost importance in many different applications, including physical, geophysical and chemical applications. Also in different areas of engineering and modern purposes as oil refining, pollution of the air with poison gas, the process of mineral extraction, the design water tanks and study volcanic activity. Also has many uses in medicine, modern science, food products, textiles and ion exchange.


Sign in / Sign up

Export Citation Format

Share Document