stagnation point
Recently Published Documents


TOTAL DOCUMENTS

2568
(FIVE YEARS 495)

H-INDEX

76
(FIVE YEARS 16)

AIAA Journal ◽  
2022 ◽  
pp. 1-12
Author(s):  
Marc Ewenz Rocher ◽  
Tobias Hermann ◽  
Matthew McGilvray ◽  
Rowan Gollan

2022 ◽  
Author(s):  
Marc Ewenz Rocher ◽  
Tobias Hermann ◽  
Matthew McGilvray ◽  
Raghul Ravichandran ◽  
Madeleine Watson ◽  
...  
Keyword(s):  

2022 ◽  
pp. 49-86
Author(s):  
John H. Merkin ◽  
Ioan Pop ◽  
Yian Yian Lok ◽  
Teodor Grosan

Author(s):  
Latif Ahmad ◽  
Saleem Javed ◽  
Muhammad Ijaz Khan ◽  
M. Riaz Khan ◽  
Essam Roshdy El-Zahar ◽  
...  

Particular non-axisymmetric Homann stagnation point flow of Walter’s B fluid over a vertical cylindrical disk is considered in this work. Important physical aspects of newly transient state problem are described by incorporating the effects of magnetic field and mixed convection. Additionally, the temperature and solute concentration are expressed with new parameters in the form of Brownian motion, thermophoretic force, thermal radiation, and 1st order chemical reaction. Furthermore, the problem is modeled with non-linear PDE’s, and which are further converted into ODE’s along with the proposed geometric conditions. Exploration of new physical impacts are described in the form of velocity, temperature, concentration, and displacement thicknesses by applying numerical scheme. However, the momentum equation subjected to the insufficient boundary conditions converting us to apply perturbation technique to reduce the order of ODE accordingly. It is conducted that displacement thicknesses [Formula: see text] and [Formula: see text] tends to its asymptotic value, as [Formula: see text] On the other hand, the displacement thickness [Formula: see text] is found in reverse trends, for the same escalating values of viscoelastic parameter. The skin friction [Formula: see text] variation against viscoelastic parameter is noticed with uplifting trend when [Formula: see text] and vice versa, for [Formula: see text] Outcomes for the Nusselt and Sherwood numbers and rate of heat and mass transfer have been obtained and discussed for parametric variations of the buoyancy parameter ξ, magnetic parameter M, temperature ratio parameter, Brownian motion parameter [Formula: see text], thermophoresis parameter [Formula: see text] and 1st order chemical reaction Rc. Also, shows relative growth for the momentum and concentration profiles.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Saeed Dinarvand ◽  
Alireza Mahdavi Nejad

Purpose The purpose of this study is to model and solve numerically the three-dimensional off-centered stagnation point flow and heat transfer of magnesium oxide–silver/water hybrid nanofluid impinging to a spinning disk. Design/methodology/approach The applied effective thermophysical properties of hybrid nanofluid including thermal conductivity and dynamics viscosity are according to the reported experimental relations that would be expanded by a mass-based algorithm. The single phase formulations coupled with experimental-based hybrid nanofluid model is implemented to derive the governing partial differential equations which are then transferred to a set of dimensionless ordinary differential equations (ODEs) with the use of the similarity transformation method. Afterward, the reduced ODEs are solved numerically by bvp4c function from MATLAB that is a trustworthy and efficient code according to three-stage Lobatto IIIa formula. Findings The effect of spinning parameter and nanoparticles masses (mMgO, mAg) on the hydrodynamics and thermal boundary layers behavior and also the quantities of engineering interest are presented in tabular and graphical forms. The recent work demonstrates that the analysis of flow and heat transfer becomes more complicated when there is a non-alignment between the impinging flow and the disk axes. From computational results demonstrate that, the radial and azimuthal velocities are, respectively, the increasing and decreasing functions of the disk spinning parameter. Further, for the greater values of the spinning parameter, an overshoot of the radial velocity owing to the centrifugal forces of the spinning disk is observed. Besides, the quantities of engineering interest gently enhance with first and second nanoparticle masses, while comparing their absolute values illustrates the fact that the effect of second nanoparticle mass (mAg) is greater. Further, it is inferred that the second nanoparticle’s mass enhancement results in the amplification of the heat transfer; although, the high skin friction and the relevant shear stress should be controlled. Originality/value The combination of experimental thermophysical properties with theoretical modeling of the problem can be the novelty of the present work. It is evident that the experimental relations of effective thermophysical properties can be trustable and flexible in the theoretical/mathematical modeling of hybrid nanofluids flows. Besides, to the best of the authors’ knowledge, no one has ever attempted to study the present problem through a mass-based model for hybrid nanofluid.


Sign in / Sign up

Export Citation Format

Share Document